

    
      
          
            
  
About pyadjoint

pyajoint is an operator-overloading algorithmic differentiation framework for
Python. It is employed as the basis for the automatic adjoint and tangent
linear model capabilities of the FEniCS [http://www.dolfin-adjoint.org] and
Firedrake [http://firedrakeproject.org] projects.

These adjoint and tangent linear models are key ingredients in many
important algorithms, such as data assimilation, optimal control,
sensitivity analysis, design optimisation, and error estimation.  Such
models have made an enormous impact in fields such as meteorology and
oceanography, but their use in other scientific fields has been
hampered by the great practical difficulty of their derivation and
implementation. In his book [http://dx.doi.org/10.1137/1.9781611972078], Naumann (2011) states that


[T]he automatic generation of optimal (in terms of robustness and
efficiency) adjoint versions of large-scale simulation code is one
of the great open challenges in the field of High-Performance
Scientific Computing.




pyadjoint aims to solve this problem for the case
where the model is implemented in the Python interface to FEniCS/Firedrake.

For more technical details on pyadjoint and dolfin-adjoint, see
the papers.


Contributors

The pyadjoint project was originally developed by:


	Sebastian Mitusch [https://www.simula.no/people/sebastkm] (Simula Research Laboratory)


	Simon W. Funke [http://www.simonfunke.com] (Deeptech Consulting)


	Jørgen S. Dokken [https://www.simula.no/people/dokken] (Simula Research Laboratory)




Based on previous work in Dolfin-adjoint [https://www.dolfin-adjoint.org] by:


	Patrick E. Farrell [http://pefarrell.org] (Mathematical Institute, University of Oxford)


	Simon W. Funke [http://www.simonfunke.com] (Deeptech Consulting)


	David A. Ham [http://www.ic.ac.uk/people/david.ham] (Department of Mathematics, Imperial College London)


	Marie E. Rognes [http://www.simula.no/people/meg/] (Simula Research Laboratory)




It is currently maintained by Jørgen Dokken and David Ham. For further
contributors see GitHub [https://github.com/dolfin-adjoint/pyadjoint/graphs/contributors].



Licence

pyadjoint is
freely available under the GNU LGPL [http://www.gnu.org/licenses/lgpl.html], version 3.
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What is the difference between dolfin-adjoint/pyadjoint and dolfin-adjoint/libadjoint?


dolfin-adjoint/libadjoint

This is the original implementation of dolfin-adjoint and uses the C library libadjoint [https://bitbucket.org/dolfin-adjoint/libadjoint]
as underlying differentiation tool.

This implementation is not longer under development. The last release was
version 2017.2.0. The documentation can still be accessed here [http://dolfin-adjoint-doc.readthedocs.io/].

Existing software projects that already use dolfin-adjoint/libadjoint are encouraged
to eventually update their code to dolfin-adjoint/pyadjoint. Since the new implementations
is mostly API compatible, the required changes should be relatively small.



dolfin-adjoint/pyadjoint

This is a full rewrite of dolfin-adjoint based on the Python algorithmic differentiation tool pyadjoint [https://github.com/dolfin-adjoint/pyadjoint] (see this poster [https://drive.google.com/file/d/1NjIFj07u_QMfuXB2Z8uv5f2LUDwY1XeM/view?usp=sharing]).

This version is actively maintained, hence new projects are advised to use this version.

Compared to the old code, this implementation is superiour
in some features, for instance it has full Hessian support, a more generic
way of defining functionals and support for Dirichlet BC controls.

If you would like to know if a specific FEniCs feature is already implemented in dolfin-adjoint/pyadjoint, consult this list [https://github.com/dolfin-adjoint/pyadjoint/blob/master/tests/migration/README.md].

If you would like to contribute, please contact us.
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About pyadjoint

pyajoint is an operator-overloading algorithmic differentiation framework for
Python. It is employed as the basis for the automatic adjoint and tangent
linear model capabilities of the FEniCS [http://www.dolfin-adjoint.org] and
Firedrake [http://firedrakeproject.org] projects.

These adjoint and tangent linear models are key ingredients in many
important algorithms, such as data assimilation, optimal control,
sensitivity analysis, design optimisation, and error estimation.  Such
models have made an enormous impact in fields such as meteorology and
oceanography, but their use in other scientific fields has been
hampered by the great practical difficulty of their derivation and
implementation. In his book [http://dx.doi.org/10.1137/1.9781611972078], Naumann (2011) states that


[T]he automatic generation of optimal (in terms of robustness and
efficiency) adjoint versions of large-scale simulation code is one
of the great open challenges in the field of High-Performance
Scientific Computing.




pyadjoint aims to solve this problem for the case
where the model is implemented in the Python interface to FEniCS/Firedrake.

For more technical details on pyadjoint and dolfin-adjoint, see
the papers.


Contributors

The pyadjoint project was originally developed by:


	Sebastian Mitusch [https://www.simula.no/people/sebastkm] (Simula Research Laboratory)


	Simon W. Funke [http://www.simonfunke.com] (Deeptech Consulting)


	Jørgen S. Dokken [https://www.simula.no/people/dokken] (Simula Research Laboratory)




Based on previous work in Dolfin-adjoint [https://www.dolfin-adjoint.org] by:


	Patrick E. Farrell [http://pefarrell.org] (Mathematical Institute, University of Oxford)


	Simon W. Funke [http://www.simonfunke.com] (Deeptech Consulting)


	David A. Ham [http://www.ic.ac.uk/people/david.ham] (Department of Mathematics, Imperial College London)


	Marie E. Rognes [http://www.simula.no/people/meg/] (Simula Research Laboratory)




It is currently maintained by Jørgen Dokken and David Ham. For further
contributors see GitHub [https://github.com/dolfin-adjoint/pyadjoint/graphs/contributors].



Licence

pyadjoint is
freely available under the GNU LGPL [http://www.gnu.org/licenses/lgpl.html], version 3.
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How to cite us

If you use pyadjoint in your research, the developers would be
grateful if you would cite the relevant publications.

For pyadjoint generally, please cite:


	Sebastian K. Mitusch, Simon W. Funke, and Jørgen S. Dokken (2019).
dolfin-adjoint 2018.1: automated adjoints for FEniCSand Firedrake,
Journal of Open Source Software, 4(38), 1292, doi:10.21105/joss.01292 [https://doi.org/10.21105/joss.01292].
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Adding Custom Functions

As mentioned in the first section of this tutorial dolfin-adjoint
works by overloading parts of FEniCS so that it may build up an annotation by recording
each step of the forward model. The list of overloaded functions and objects is found
in the API reference. The part of dolfin-adjoint that takes care of the fundamental
annotation is pyadjoint, which is independent of FEniCS.
dolfin-adjoint tells pyadjoint how to handle FEniCS types and functions.
If the forward model uses custom functions rather than the
standard FEniCS functions, pyadjoint won’t know how to record
these steps, therefore we have to tell it how, by overloading the functions ourselves.


A Simple Example

Suppose we have a module we want to use with our FEniCS model,
in this example the module will be named normalise and consist of
only one function: normalise(func). The module looks like this:

from fenics import *
from fenics_adjoint import *


def normalise(func):
    vec = func.vector()
    normalised_vec = vec / vec.norm('l2')
    return Function(func.function_space(), normalised_vec)





[image: more info] Download this file

The function normalise(func) normalises the vector form of a FEniCS function,
then returns the FEniCS function form of that normalised vector. A simple fenics
program that uses this function might look like this:

from fenics import *
from fenics_adjoint import *
from normalise import normalise

mesh = UnitSquareMesh(10, 10)
V = FunctionSpace(mesh, 'CG', 1)

f = project(Expression('x[0]*x[1]', degree=1), V)

g = normalise(f)

J = assemble(g*dx)





[image: more info] Download this example

Here we define a function on a space, normalise it with our function and integrate it
over the space. Now we want to know the gradient of \(J\) with respect to the initial
conditions, we could try simply adding

from fenics_adjoint import *





and

dJdf = compute_gradient(J, Control(f))





but that won’t work, because pyadjoint does not know that it should record
the normalisation and it does not know what the derivative of the normalisation is.
We should create a new module that overloads normalise(func), telling
pyadjoint how to deal with it.



Overloading a function

Let us now create a module overloading the normalise(func) function.
We need to start by importing the FEniCS and dolfin-adjoint modules, along with
some specific functions needed for overloading and of course the function we want to
overload.

from fenics import *
from fenics_adjoint import *

from pyadjoint import Block

from normalise import normalise





Since we are overloading normalise(func) we need to change it’s name
to keep access to it:

backend_normalise = normalise






The Block class

The pyadjoint tape consists of instances of Block subclasses.
These subclasses implement methods that can compute partial derivatives of their respective function.
Thus, to properly overload normalise we must implement a Block subclass,
which we call NormaliseBlock.
In addition to writing a constructor we have to override the methods evaluate_adj_component() and
recompute_component(), we will also add a __str__() method.
In our example the constructor may look like this

class NormaliseBlock(Block):
   def __init__(self, func, **kwargs):
       super(NormaliseBlock, self).__init__()
       self.kwargs = kwargs
       self.add_dependency(func.block_variable)





We call the superclass constructor and  save the key word arguments.
Then we tell pyadjoint that the operation this block represents depends
on the function func. As func should be an overloaded object it has a
block_variable() attribute.

Next we can define a __str__() method. This gives a name to the block,
so the output of this is for example how the block is represented in graphs made
with visualise as explained in the section
on debugging.

def __str__(self):
    return "NormaliseBlock"





We need a recompute method that can
recompute the function with new inputs.

def recompute_component(self, inputs, block_variable, idx, prepared):
    return backend_normalise(inputs[0])





We get a list of new inputs which is of length 1 because we only have one input variable.
Or more precisely, we only added one dependency in the constructor.



The adjoint

The method evaluate_adj_component() should evaluate the one component of the vector-Jacobian product.
In the mathematical background we discussed the tangent linear model
and the adjoint on the level of the whole model. Here we consider more concretely
how dolfin-adjoint treats each block. pyadjoint treats a forward model as a series of equation solves.
Some of these equations are complicated PDEs that are solved by the FEniCS function solve,
but others are of the straightforward form


\[y = f(x_1,\ldots,x_n),\]

where \(y\) is the only unknown. Our normalise function may be represented by this kind of equation.
When differentiating a functional pyadjoint works by considering each block as a link in chain formed by
the chain rule. If a functional is the result of a series of straightforward transformations on an initial condition:


\[J(u_n(u_{n-1}(\ldots(u_0)\ldots))),\]

then by the chain rule


\[\frac{\mathrm{d}J}{\mathrm{d}u_0} = \frac{\partial J}{\partial u_n}\frac{\partial u_n}{\partial u_{n-1}}\ldots\frac{\partial u_1}{\partial u_0}.\]

If we consider instead the adjoint model we will find the transpose of \(\frac{\mathrm{d}J}{\mathrm{d}u_0}\):


\[\frac{\mathrm{d}J}{\mathrm{d}u_0}^* = \frac{\partial u_1}{\partial u_0}^*\frac{\partial u_2}{\partial u_{1}}^*\ldots\frac{\partial J}{\partial u_n}^*.\]

Calculating from the right we find that for each link


\[y_i = \frac{\partial u_i}{\partial u_{i-1}}^*y_{i+1},\]

where


\[y_{n+1} = \frac{\partial J}{\partial u_n}^*.\]

and


\[y_1 = \frac{\mathrm{d} J}{\mathrm{d} u_0}^*\]

Each block only needs to find the transpose of its own gradient!
This is implemented in evaluate_adj().



Back to our example

Mathematically our normalisation block may be represented in index notation as


\[f(x_i) = \frac{x_i}{||x||}.\]

The Jacobian matrix consists of the entries


\[\frac{\partial f(x_i)}{\partial x_j} = \frac{1}{||x||} \delta_{ij} - \frac{x_i x_j}{||x||^3}\]


	evaluate_adj() takes a vector as input and returns the transpose of the Jacobian matrix
	multiplied with that vector:






\[\nabla f^* \cdot y = \sum_j \frac{\partial f(x_j)}{\partial x_i} y_j =
\sum_{j} \frac{1}{||x||} \delta_{ij} y_j -
\frac{x_i x_j}{||x||^3} y_j = \frac{y_i}{||x||} - \frac{x_i}{||x||^3} \sum_j x_j y_j\]

evaluate_adj_component() works as evaluate_adj(),
but computes only the component that corresponds to a single dependency (input).
In other words, given an index \(i\) evaluate_adj_component() computes
the component \(\left(\nabla f^* \cdot y\right)_i\).

By default, evaluate_adj() calls evaluate_adj_component() for each of the relevant components.

Now let us look at the implementation:

def evaluate_adj_component(self, inputs, adj_inputs, block_variable, idx, prepared=None):
    adj_input = adj_inputs[0]
    x = inputs[idx].vector()
    inv_xnorm = 1.0 / x.norm('l2')
    return inv_xnorm * adj_input - inv_xnorm ** 3 * x.inner(adj_input) * x





evaluate_adj_component() takes 5 arguments:


	inputs is a list of the inputs where we compute the derivative, i.e \(x\) in the above derivations.
This list has the same length as the list of dependencies.


	adj_inputs is a list of the adjoint inputs, i.e \(y_{i+1}\) above with this method representing the computation of \(y_i\).
This list has the same length as the list of outputs.


	block_variable is the block variable of the dependency (input) that we differentiate with respect to.


	idx is the index of the dependency, that we differentiate with respect to, in the list of dependencies.
Given a function output \(z = f(x, y)\), where the dependency list is [x, y], then \((\partial z/\partial x)^*\)
for idx == 0 and \((\partial z/\partial y)^*\) for idx == 1.


	prepared can be anything. It is the return value of prepare_evaluate_adj(),
which is run before evaluate_adj_component() is called for each relevant dependency
and the default return value is None [https://docs.python.org/3/library/constants.html#None].
If your implementation would benefit from doing some computations independent of the relevant dependencies,
you should consider implementing prepare_evaluate_adj().
For example, for solve() the adjoint equation is solved in prepare_evaluate_adj(),
and the adjoint solution is provided in the prepared parameter.




For more in-depth documentation on Blocks in pyadjoint, see



The overloading function

Now we are ready to define our overloaded function.
For simple functions, where the function return value is the output,
pyadjoint offers a convenience function for overloading.
For this example, we utilize this convenience function:

from pyadjoint.overloaded_function import overload_function
normalise = overload_function(normalise, NormaliseBlock)





[image: more info] download the overloaded module

That’s it! Now we are ready to use our function normalise with dolfin-adjoint.
Let us perform a taylor test to see if it works:

from fenics import *
from fenics_adjoint import *
from normalise_overloaded import normalise

from numpy.random import rand

mesh = UnitSquareMesh(10, 10)
V = FunctionSpace(mesh, 'CG', 1)

f = project(Expression('x[0]*x[1]', degree=1), V)

g = normalise(f)

J = assemble(g*dx)

h = Function(V)
h.vector()[:] = rand(h.vector().local_size())

taylor_test(ReducedFunctional(J, Control(f)), f, h)





[image: more info] download this test

This gives the output:

Running Taylor test
Computed residuals: [5.719808547999933e-06, 1.4356712128880207e-06, 3.596346874345e-07, 8.999840626988876e-08]
Computed convergence rates: [1.99424146695553, 1.9971213080328687, 1.9985608192605893]





It works.
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Debugging


Visualising the system

It is sometimes useful when debugging a problem to see dolfin-adjoint’s
interpretation of your forward system, and the other models it derives
from that. The visualise function
visualises the system as a graph using TensorFlow [https://www.tensorflow.org/]. To do this add

tape = get_working_tape()
tape.visualise()





This will create a log directory with TensorFlow event files. We can
then run TensorBoard, which comes bundled with TensorFlow, and point it
to this log directory:

tensorboard --logdir=log





By default the log directory is a directory log in the
current working directory. This can be changed by specifying a
directory in the logdir keyword argument to
visualise.

Finally, we can open http://localhost:6006/ in a web browser to view the
graph. To demonstrate, let us use a simplified version of our old
Burgers’ equation example:

from dolfin import *
from fenics_adjoint import *

n = 30
mesh = UnitSquareMesh(n, n)
V = VectorFunctionSpace(mesh, "CG", 2)

u = project(Expression(("sin(2*pi*x[0])", "cos(2*pi*x[1])"), degree=2),  V)
u_next = Function(V)
v = TestFunction(V)

nu = Constant(0.0001)

timestep = Constant(0.01)

F = (inner((u_next - u)/timestep, v)
     + inner(grad(u_next)*u_next, v)
     + nu*inner(grad(u_next), grad(v)))*dx

bc = DirichletBC(V, (0.0, 0.0), "on_boundary")

solve(F == 0, u_next, bc)

tape = get_working_tape()
tape.visualise()





Here we solve the equation for only one timestep.

[image: more info] Download the code to find graph.

Running TensorBoard and opening http://localhost:6006/ in our web
browser shows us the following graph:

[image: ../_images/simplified_burgers.png]
Each node corresponds to an elementary operation, and we see that the
structure is what we should expect: two functions, two constants and a
set of boundary conditions go into an equation and we get one function
out. To increase readability further we can add names to the functions:

from dolfin import *
from fenics_adjoint import *

n = 30
mesh = UnitSquareMesh(n, n)
V = VectorFunctionSpace(mesh, "CG", 2)

u = project(Expression(("sin(2*pi*x[0])", "cos(2*pi*x[1])"), degree=2),  V)
u_next = Function(V, name="u_next")
v = TestFunction(V)

nu = Constant(0.0001, name="nu")

timestep = Constant(0.01, name="dt")

F = (inner((u_next - u)/timestep, v)
     + inner(grad(u_next)*u_next, v)
     + nu*inner(grad(u_next), grad(v)))*dx

bc = DirichletBC(V, (0.0, 0.0), "on_boundary")

solve(F == 0, u_next, bc)

tape = get_working_tape()
tape.visualise()





The resulting graph is the following:

[image: ../_images/simplified_burgers_named.png]
Here we have expanded some of the nodes by double-clicking on them. We
see that it is indeed u_next that is found by the equation
solve.

[image: more info] Download the code to find the graph with names.

If we have a time loop, the graph can easily become large and difficult
to read. The name_scope factory
function can be used to make this easier. To demonstrate this, we add a
time loop to our example above:

from dolfin import *
from fenics_adjoint import *

n = 30
mesh = UnitSquareMesh(n, n)
V = VectorFunctionSpace(mesh, "CG", 2)

u = project(Expression(("sin(2*pi*x[0])", "cos(2*pi*x[1])"), degree=2),  V)
u_next = Function(V, name="u_next")
v = TestFunction(V)

nu = Constant(0.0001, name="nu")

timestep = Constant(0.01, name="dt")

F = (inner((u_next - u)/timestep, v)
     + inner(grad(u_next)*u_next, v)
     + nu*inner(grad(u_next), grad(v)))*dx

bc = DirichletBC(V, (0.0, 0.0), "on_boundary")

tape = get_working_tape()

t = 0.0
end = 0.05
while (t <= end):
    with tape.name_scope("Timestep"):
        solve(F == 0, u_next, bc)
        u.assign(u_next)
        t += float(timestep)

tape.visualise()





Here, we should note the line after we enter the while
loop. In this line we use a with statement together with
name_scope and a name for the
scope. This will ensure that all nodes corresponding to one time step
will be added to its own scope. After the time loop, we call
visualise and get the following
graph:

[image: ../_images/burgers_timesteps.png]
We can then expand the scopes as we like. Here we have expanded the
first time step:

[image: ../_images/burgers_timesteps_expanded.png]
[image: more info] Download the code to find the graph with name scopes.

In the next section we discuss parallelisation.
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Frequently asked questions


	Q: I have a time-dependent control in my PDE-constrained
optimization problem: how do I define this?

A: Take a look the time-dependent wave example for how to
specify time-dependent controls and functionals.
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Expressing functionals

In the example presented in the tutorial, the quantity of interest was
evaluated at the end of the simulation. However, it is very common
to want to compute integrals over time, or evaluated at certain points
in time that are not the end. With dolfin-adjoint this is very straightforward.


Examples

To see how it works, we once again consider the Burgers equation example
from the tutorial:

from fenics import *
from fenics_adjoint import *

n = 30
mesh = UnitSquareMesh(n, n)
V = VectorFunctionSpace(mesh, "CG", 2)

u = project(Expression(("sin(2*pi*x[0])", "cos(2*pi*x[1])"), degree=2),  V)
control = Control(u)

u_next = Function(V)
v = TestFunction(V)

nu = Constant(0.0001)

timestep = Constant(0.01)

F = (inner((u_next - u)/timestep, v)
     + inner(grad(u_next)*u_next, v)
     + nu*inner(grad(u_next), grad(v)))*dx

bc = DirichletBC(V, (0.0, 0.0), "on_boundary")

t = 0.0
end = 0.1
while (t <= end):
    solve(F == 0, u_next, bc)
    u.assign(u_next)
    t += float(timestep)

J = assemble(inner(u, u)*dx)
dJdu, dJdnu = compute_gradient(J, [control, Control(nu)])





Here the functional considered was


\[J(u) = \int_{\Omega} \left\langle u(T), u(T) \right\rangle \ \textrm{d}\Omega.\]

Let us see how we have to change the program to accomedate different functionals with different time dependencies:
To do this we should change the forward code to compute part of \(J\)
at each time step and save the value to a list:

t = 0.0
end = 0.1
Jtemp = assemble(inner(u,u)*dx)
Jlist = [Jtemp]
while (t <= end):
    solve(F == 0, u_next, bc)
    u.assign(u_next)
    t += float(timestep)

    Jtemp = assemble(inner(u, u)*dx)
    Jlist.append(Jtemp)





Let us look at some specific functionals:


	Integration over all time:


\[J(u) = \int_0^T\int_{\Omega}\left\langle u(t),u(t)\right\rangle \ \textrm{d}\Omega \ \textrm{d}t\]

We need to perform the time integral numerically, for example by the trapezoidal rule:

J = 0
for i in range(1, len(Jlist)):
    J += 0.5*(Jlist[i-1] + Jlist[i])*float(timestep)





We could also use ready-made integration routines, but we have to make sure that the routine does
not change the type of the J. Jtemp and J have
type AdjFloat.

[image: more info] Download the code to find the full time integral.



	Integration over a certain time window:


\[J(u) = \int_{t_1}^{t_2}\int_{\Omega}\left\langle u(t),u(t)\right\rangle \ \textrm{d}\Omega \ \textrm{d}t\]

We can again use the trapezoidal rule. Compared to the full time integration we only have to change the looping range.
If we use our example with \(t_{1} = 0.03\) and
\(t_{2} = 0.07\), then we can write

J = 0
for i in range(4, 8):
    J += 0.5*(Jlist[i-1] + Jlist[i])*float(timestep)







	Integration from a certain point until the end:


\[J(u) = \int_{t_1}^{T}\int_{\Omega}\left\langle u(t),u(t)\right\rangle \ \textrm{d}\Omega \ \textrm{d}t\]

Again we only change the loop range. If we use our example with \(t_{1} = 0.03\) we can write

J = 0
for i in range(4,len(Jlist)):
    J += 0.5*(Jlist[i-1] + Jlist[i])*float(timestep)







	Pointwise evaluation in time:


\[J(u) = \int_{\Omega}\left\langle u(t_1),u(t_1)\right\rangle \ \textrm{d}\Omega\]

Here we only need to pick out the functional from the list, for example if \(t_1 = 0.03\):

J = Jlist[3]







	Pointwise evaluation at the start (e.g. for regularisation terms):


\[J(u) = \int_{\Omega}\left\langle u(0),u(0)\right\rangle \ \textrm{d}\Omega\]

Again we only need to pick out the functional from the list:

J = Jlist[0]







	Pointwise evaluation at the end:


\[J(u) = \int_{\Omega}\left\langle u(T),u(T)\right\rangle \ \textrm{d}\Omega\]

Here we only need to pick out the functional from the list:

J = Jlist[-1]







	And sums of these work too:


\[J(u) = \int_0^T\int_{\Omega}\left\langle u(t),u(t)\right\rangle \ \textrm{d}\Omega \ \textrm{d}t  + \int_{\Omega}\left\langle u(T),u(T)\right\rangle \ \textrm{d}\Omega\]

J = 0
for i in range(1, len(Jlist)):
    J += 0.5*(Jlist[i-1] + Jlist[i])*float(timestep)
J += JList[-1]







	Ratio of evaluation at different times


\[J(u) = \frac{\int_{\Omega}\left\langle u(t_2),u(t_2)\right\rangle \ \textrm{d}\Omega}{\int_{\Omega}\left\langle u(t_1),u(t_1)\right\rangle \ \textrm{d}\Omega}\]

for example with \(t_1 = 0\) and \(t_2 = 0.03\):

J = Jlist[3]*Jlist[0]**(-1)









In the next section we discuss how to use pyadjoint with functions other than FEniCS functions.
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Documentation for pyadjoint

pyadjoint is a generic algorithmic differentiation framework.
The aim of this page is to introduce the reader to how pyadjoint works and how it can be used.
It can be useful to also have a look at the pyadjoint API.
We stress that this is not an algorithmic differentiation tutorial.
For an introduction to algorithmic differentiation see for example the book by Naumann [http://dx.doi.org/10.1137/1.9781611972078]


The core idea

In general, we will be interested in differentiating some output vector \(y \in \mathbb{R}^m\) with respect to
some input vector \(x \in \mathbb{R}^n\). Assuming we can decompose the forward computations into


\[y = f(x) = g_k \circ g_{k-1} \circ \cdots g_{1}(x),\]

then the derivative of the output in direction \(\hat{x}\) is


\[\frac{\mathrm{d}y}{\mathrm{d}x} \hat{x} = \frac{\partial g_{k}(w_{k-1})}{\partial w_{k-1}}
                                  \frac{\partial g_{k-1}(w_{k-2})}{\partial w_{k-2}}
                                  \cdots
                                  \frac{\partial g_{2}(w_1)}{\partial w_1}
                                  \frac{\partial g_{1}(x)}{\partial x} \hat{x},\]

for some intermediate solutions \(w_i, i = 1, 2, ..., k-1\).
In reverse mode algorithmic differentiation, we are interested in the adjoints:


\[\frac{\mathrm{d}y}{\mathrm{d}x}^* \bar{y} = \frac{\partial g_{1}(x)}{\partial x}^*
                                            \frac{\partial g_{2}(w_1)}{\partial w_1}^*
                                            \cdots
                                            \frac{\partial g_{k-1}(w_{k-2})}{\partial w_{k-2}}^*
                                            \frac{\partial g_{k}(w_{k-1})}{\partial w_{k-1}}^* \bar{y},\]

for some weights \(\bar{y} \in \mathbb{R}^m\).
In order to compute the adjoints we must somehow remember all the operations performed in the forward computations,
and either remember or recompute the intermediate variables.

In pyadjoint, the Tape class is responsible for remembering these operations.
The operations are stored in a list [https://docs.python.org/3/library/stdtypes.html#list], and can be thought of as nodes in a directed acyclic graph.
The Tape objects thus offer ways to do graph manipulations and visualisations.

The operations or nodes are represented by instances of subclasses of Block.
These subclasses implement operation-specific methods, while the parent class, Block,
implements common methods for use with the tape.
These Block instances also keep track of their inputs and outputs,
which are represented by BlockVariable instances.

For all this to be set up correctly, we require a way to populate the Tape
and instantiate Block objects.
To achieve this, we create overloaded functions that replace original functions and
that are responsible for both of these tasks.
An overloaded function should, for the user, act exactly as the original function.

In addition, to deal with mutating data objects used as inputs/outputs,
all data types should have an overloaded counterpart.
The overloaded data-types should inherit from both the original data-type and the pyadjoint class OverloadedType.
OverloadedType ensures that the data-type has a BlockVariable instance attached,
and declares some abstract methods for interaction with pyadjoint API functions that should be implemented by
the specific data-types.

The core classes of pyadjoint are thus Tape, Block, BlockVariable and OverloadedType.
We will now discuss each class individually, starting with OverloadedType.



OverloadedType

The pyadjoint user-API provides several useful functions that act on the tape.
For example, the function taylor_test() for verifying implementation, and minimize() in the optimization subpackage for
minimizing functionals. To allow these functions to work without any knowledge of the structure of the data-types,
some logic is moved into abstract methods of the OverloadedType, and are expected to be implemented
for the individual data-types. At pyadjoint API you can see the individual abstract methods.
Some methods are more important than others, because some of the abstract methods are only required for specific functions,
while for instance OverloadedType._ad_create_checkpoint() and OverloadedType._ad_restore_at_checkpoint() are required for just working with the tape at all.

The OverloadedType class also has a single attribute, block_variable, which holds an instance of BlockVariable.
In addition it defines the method OverloadedType.create_block_variable() which sets block_variable attribute to a new
BlockVariable instance, and returns it. This is used when adding the data-type as an output to a block.
More information on that below.

To ensure that all pyadjoint specific methods are available, all data-type instances exposed to the end-user
must be converted to overloaded versions.
This is achieved through the create_overloaded_object() function,
which combines a dictionary mapping original data-types to overloaded data-types, and the individually implemented
OverloadedType._ad_init_object() method.

To populate the dictionary map, one must call register_overloaded_type().
This can conveniently be accomplished by using the function as a decorator when defining the overloaded data-type.
In that case, you must use OverloadedType as the first base class, and the original data-type as second base class.
Apart from implementing the abstract methods, one must also remember to call the constructor OverloadedType.__init__()
in the overloaded data-type constructor.



BlockVariable

To track intermediate solutions, pyadjoint employs the class BlockVariable.
Storing interm_sol = y does not guarantee that interm_sol remains the same until the end
of the program execution if y is a mutable type.
Thus, to ensure that the right values are kept, we create copies of the values used as input/output to operations.

Every time an instance of a data-type changes values, it should be assigned a new BlockVariable.
Hence, BlockVariable can be thought of as an identifier for a specific version of a specific data-type object.

The BlockVariable class is quite simple.
It holds a reference to the OverloadedType instance that created it, a checkpoint,
some attributes for storing values in adjoint and tangent linear sweeps, and some flags.

The checkpoint is a copy of the values of the data-type (OverloadedType) instance.
It does not have to be an exact copy of the instance.
All that is required is that it is possible to restore an instance of the same type with the same values
at a later point.
This is implemented in the OverloadedType._ad_create_checkpoint() and OverloadedType._ad_restore_at_checkpoint() methods in the OverloadedType class.
As an example, if a data-type was a function parameterised by a float, then a checkpont only requires storing this float,
and the restoring method can create the same function using the same parameter value.

The attribute tlm_value holds the derivative direction for the forward mode AD sweep.
This should be an instance of the same type as the corresponding OverloadedType instance.

The attribute adj_value holds the computed adjoint derivative action (can be thought of as the gradient).
The type is in theory up to the block implementations, but to ensure compatibility across different blocks it should
be an array-like type, such as a numpy array.
Also it must be ensured that the choice of inner product is consistent between blocks.
Thus, it is recommended that all blocks employ the \(l^2\) inner product, i.e \((u, v)_{l^2} = u^Tv\)
where \(u, v \in \mathbb{R}^n\).
If the gradient with some other inner-product is desired, one can use Riesz representation theorem
in the OverloadedType._ad_convert_type() method of OverloadedType.

The attribute hessian_value holds the computed hessian vector action.
This should have the same type as adj_value.



Block

Before we go into how Blocks are implemented, let us take a look at a basic implementation of an overloaded function.
Instead of using overload_function() we manually define the overloaded function in a similar way that the
pyadjoint function would automatically do for you.

backend_example_function = example_function
def example_function(*args, **kwargs):
    annotate = annotate_tape(kwargs)
    if annotate:
        tape = get_working_tape()
        b_kwargs = ExampleBlock.pop_kwargs(kwargs)
        b_kwargs.update(kwargs)
        block = ExampleBlock(*args, **b_kwargs)
        tape.add_block(block)

    with stop_annotating():
        output = backend_example_function(*args, **kwargs)
    output = create_overloaded_object(output)

    if annotate:
        block.add_output(output.create_block_variable())

    return output





Let us go line by line through this. First we store a reference to the original function,
then we start defining the overloaded function.
Since overloaded functions can take some extra keyword arguments, one should use varying length keyword arguments
in the function definition.
Then we pass the keyword arguments to the pyadjoint function annotate_tape().
This will try to pop the keyword argument annotate from the keyword arguments dictionary,
and return whether annotation is turned on. If annotation is turned on, we must add the operation to the tape.
We first fetch the current tape using get_working_tape(), then we pop block-specific keyword arguments
and merge them with the actual keyword arguments. These are then used when we instantiate the block, which
in our example is ExampleBlock. Then the block instance is added to the tape.

No matter if we annotate or not, we must run the original function.
To prevent the inner code of the original function to be annotated, we use the pyadjoint context manager stop_annotating().
After calling the original function, we convert the returned output to OverloadedType.
Finally, if we are annotating then we create a new block variable for the output and add it as output of the block.

We now focus on the implementation of the block (ExampleBlock in the case above).
The implementation of the constructor of the Block is largely up to the implementing user,
as the main requirement is that the overloaded function and the block constructor are on the same page
regarding how inputs/outputs are passed and what should be handled in the constructor and what is handled in the overloaded function.

For our example above, the constructor must first call the parent-class constructor, and also add the dependencies (inputs)
using the Block.add_dependency() method. This method takes a block variable as input and appends it to a list [https://docs.python.org/3/library/stdtypes.html#list],
and thus it is important that all objects that are to be added to the dependencies should be an overloaded type.
Below we show an example of a block constructor.

class ExampleBlock(Block):
    def __init__(self, *args, **kwargs):
    super(ExampleBlock, self).__init__()
    self.kwargs = kwargs
    for arg in args:
        self.add_dependency(arg.block_variable)





Note that not necessarily all arguments need to be dependencies.
Only the inputs for which we wish to enable derivatives are strictly needed as dependencies.

Similarly to the dependencies, the output is also a list of block variables.
Although it is often not needed, we can obtain the list of dependencies or outputs using the Block.get_dependencies() and Block.get_outputs() methods.
It is important to note that the block only stores BlockVariable instances in these lists, and that to get the real values you need to access attributes of the BlockVariable.
For example, to restore the checkpoint and get the restored object, use x = block_variable.saved_output.

The core methods of Block that allow for recomputations and derivatives to be computed are
Block.recompute(), Block.evaluate_adj(), Block.evaluate_tlm() and Block.evaluate_hessian().
These methods are implemented in the abstract Block class, and by default delegate
to the abstract methods *_component() (i.e Block.evaluate_adj_component()).

We first inspect how Block.recompute() works.
The core idea is to use dependency checkpoints to compute new outputs and overwrite the output checkpoints with these new values.
In the most basic form, the recompute method can be implemented as follows.

def recompute(self, markings=False):
    x = self.get_dependencies()[0].saved_output
    y = backend_example_function(x)
    self.get_outputs()[0].checkpoint = y





Here we have assumed that there is only one real dependency, hence self.get_dependencies() is a list of
length one. Similarly we assume that this is the only input needed to the original function, and that the
output is given explicitly through the return value of the original function. Lastly, we assume that the
block has only one output and thus the length of self.get_outputs() is one.

The optional keyword argument markings is set to True [https://docs.python.org/3/library/constants.html#True] when relevant block variables have been flagged.
In that case, the recompute implementation can do optimizations by not recomputing outputs that are not relevant for
what the user is interested in.

This unwrapping and working with attributes of BlockVariable instances may seem unnecessarily complicated,
but it offers great flexibility.
The Block.recompute_component() method tries to impose a more rigid structure,
but can be replaced by individual blocks by just overloading the Block.recompute() method directly.

The following is an example of the same implementation with Block.recompute_component()

def recompute_component(self, inputs, block_variable, idx, prepared):
    return backend_example_function(inputs[0])





Here the typically important variables are already sorted for you. inputs is a list of the new input values
i.e the same as making a list of the saved_output of all the dependencies.
Furthermore, each call to the Block.recompute_compontent() method is only for recomputing a single output,
thus alleviating the need for code that optimizes based on block variable flags when markings == True.
The block_variable parameter is the block variable of the output to recompute, while the idx is
the index of the output in the self.get_outputs() list.

Sometimes you might want to do something once, that is common for all output recomputations.
For example, your original function might return all the outputs, or you must prepare the input in a special way.
Instead of doing this repeatedly for each call to Block.recompute_component(),
one can implement the method Block.prepare_recompute_component(). This method by default returns None [https://docs.python.org/3/library/constants.html#None],
but can return anything. The return value is supplied to the prepared argument of Block.recompute_component().
For each time Block.recompute() is called, Block.prepare_recompute_component() is called once and
Block.recompute_component() is called once for each relevant output.

Now we take a look at Block.evaluate_tlm(). This method is used for the forward AD sweep and should
compute the Jacobian vector product. More precisely, using the decomposition above, the method should compute


\[\hat{w}_{i + 1} = \frac{\partial g_{i + 1}(w_i)}{\partial w_i} \hat{w}_i\]

where \(\hat{w}_i\) is some derivative direction, and \(g_{i+1}\) is the operation represented by the block.
In Block.evaluate_tlm(), \(\hat{w}_i\) has the same type as the function inputs (block dependencies) \(w_{i}\).
The following is a sketch of how Block.evaluate_tlm() can be implemented

def evaluate_tlm(self, markings=False):
    x = self.get_dependencies()[0].saved_output
    x_hat = self.get_dependencies()[0].tlm_value

    y_hat = derivative_example_function(x, x_hat)

    self.get_outputs()[0].add_tlm_output(y_hat)





We have again assumed that the example function only has one input and one output.
Furthermore, we assume that we have implemented some derivative function in derivative_example_function().
The last line is the way to propagate the derivative directions forward in the tape.
It essentially just adds the value to the tlm_value attribute of the output block variable,
so that the next block can fetch it using tlm_value.

As with the recompute method, pyadjoint also offers a default Block.evaluate_tlm() implementation,
that delegates to Block.evaluate_tlm_component() for each output.
In our case, with only one output, the component method could look like this

def evaluate_tlm_component(self, inputs, tlm_inputs, block_variable, idx, prepared):
    return derivative_example_function(inputs[0], tlm_inputs[0])





The prepared parameter can be populated in the Block.prepare_evaluate_tlm() method.

Block.evaluate_adj() is responsible for computing the adjoint action or vector Jacobian product.
Using the notation above, Block.evaluate_adj() should compute the following


\[\bar{w}_{i - 1} = \frac{\partial g_{i}(w_{i-1})}{\partial w_{i-1}}^* \bar{w}_i\]

where the adjoint operator should be defined through the \(l^2\) inner product.
Assuming \(g_{i} : \mathbb{R}^n \rightarrow \mathbb{R}^m\), then the adjoint should be defined by


\[(\frac{\partial g_{i}(w_{i-1})}{\partial w_{i-1}} u, v)_{\mathbb{R}^m} = (u, \frac{\partial g_{i}(w_{i-1})}{\partial w_{i-1}}^* v)_{\mathbb{R}^n}\]

for all \(u \in \mathbb{R}^n, v \in \mathbb{R}^m\). Where \((a, b)_{\mathbb{R}^k} = a^Tb\) for all \(a,b \in \mathbb{R}^k, k \in \mathbb{N}\).

Using the same assumptions as earlier the implementation could look similar to this

def evaluate_adj(self, markings=False):
    y_bar = self.get_outputs()[0].adj_value
    x = self.get_dependencies()[0].saved_output

    x_bar = derivative_adj_example_function(x, y_bar)

    self.get_dependencies()[0].add_adj_output(x_bar)





There is also a default implementation for Block.evaluate_adj(),
that calls the method Block.evaluate_adj_component() for each relevant dependency.
This method could be implemented as follows

def evaluate_adj_component(self, inputs, adj_inputs, block_variable, idx, prepared):
    return derivative_adj_example_function(inputs[0], adj_inputs[0])





If there is any common computations across dependencies, these can be implemented in
Block.prepare_evaluate_adj().



Tape

As we have seen, we store the created block instances in a Tape instance.
Each Tape instance holds a list [https://docs.python.org/3/library/stdtypes.html#list] of the block instances added to it.
There can exists multiple Tape instances, but only one can be the current working tape.
The working tape is the tape which is annotated to, i.e in which we will store any block instances created.
It is also the tape that is by default interacted with when you run different pyadjoint functions that rely on
a tape. The current working tape can be set and retrieved with the functions set_working_tape() and
get_working_tape().

Annotation can be temporarily disabled using pause_annotation() and enabled again using continue_annotation().
Note that if you call pause_annotation() twice, then continue_annotation() must be called twice
to enable annotation. Due to this, the recommended annotation control functions are stop_annotating and no_annotations().
stop_annotating is a context manager and should be used as follows

with stop_annotating():
    # Code without annotation
    ...





no_annotations() is a decorator for disabling annotation within functions or methods.
To check if annotation is enabled, use the function annotate_tape().

Apart from storing the block instances, the Tape class offers a few methods for interaction
with the computational graph. Tape.visualise() can be used to visualise the computational graph
in a graph format. This can be useful for debugging purposes. Tape.optimize() offers a way to
remove block instances that are not required for a reduced function. For optimizing the tape based on either
a reduced output or input space, use the methods Tape.optimize_for_functionals() and Tape.optimize_for_controls().
Because these optimize methods mutate the tape, it can be useful to use the Tape.copy() method to
keep a copy of the original list of block instances.
To add block instances to the tape and retrieve the list of block instances, use Tape.add_block() and Tape.get_blocks().

Other Tape methods are primarily used internally and users will rarely access these directly.
However, it can be useful to know and use these methods when implementing custom overloaded functions.
The tape instance methods that activate the Block.evaluate_adj() and Block.evaluate_tlm() methods are
Tape.evaluate_adj(), Tape.evaluate_tlm().
These methods just iterate over all the blocks and call the corresponding evaluate method of the block.
Usually some initialization is required, which is why these methods will likely not be called directly by the user.
For example, for the backward sweep (Tape.evaluate_adj()) to work, you must initialize your functional
adjoint value with the value 1. This is the default behaviour of the compute_gradient() function.

Similarly, to run the Tape.evaluate_tlm() properly, a direction, \(\hat{x}\), must be specified.
This can be done as follows

y = example_function(x)
x.block_variable.tlm_value = x_hat
tape = get_working_tape()
tape.evaluate_tlm()
dydx = y.block_variable.tlm_value





In a similar way, one can compute the gradient without using compute_gradient()

y = example_function(x)
y.block_variable.adj_value = y_bar
tape = get_working_tape()
tape.evaluate_adj()
grady = x.block_variable.adj_value





Where y_bar could be 1 if y is a float.
However, compute_gradient() also performs other convenient operations.
For example, it utilizes the markings flag in the Block.evaluate_adj() method.
The markings are applied using the context manager Tape.marked_nodes().
In addition, compute_gradient() converts adj_value to overloaded types using the
OverloadedType._ad_convert_type() method.
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PDE-constrained optimisation

PDE-constrained optimisation problems are problems of the form:


\[ \begin{align}\begin{aligned}\min_{u,m} J(u, m)\\\mathrm{subject~to}\\F(u, m) = 0\\l_u \le m \le l_b\\g(m) \le 0\end{aligned}\end{align} \]

where \(m\) contains the optimisation variables, \(J\) is a
real valued objective functional, \(F(u, m) = 0\) is the PDE with
solution \(u\).  The bounds and inequality constraints can be used
to restrict the feasible optimisation variables.

For an introduction to the mathematics, see the chapter in the
mathematical background.


The reduced functional

While it is possible to solve the optimisation problem above directly,
we often prefer to form the so-called reduced problem.  Given that
for every \(m\) the PDE yields a unique solution \(u\), we can
define a solution operator \(u(m)\).  Substituting this operator
into the optimisation problem yields the reduced problem:


\[ \begin{align}\begin{aligned}\min_{m} J(u(m), m)\\\mathrm{subject~to}\\l_u \le m \le l_b\\g(m) \le 0\end{aligned}\end{align} \]

The advantage of solving this formulation is that the PDE-constraint
is exactly satisfied at each optimisation iteration.  In particular,
the optimisation loop can be terminated as soon as the functional is
sufficiently reduced by the optimisation algorithm, without any
feasibility iterations.

The functional in the reduced form can be seen as a function that only
depends on the optimisation variable m, that is:


\[\tilde J(m) := J(u(m), m)\]

The definition of this reduced functional \(\tilde J\) is the
first step of solving an optimisation problem with dolfin-adjoint.  It
is created with:

reduced_functional = ReducedFunctional(J, m)





where J is an AdjFloat and m is a
Control.

Important: ReducedFunctional works by replaying the
simulation record of dolfin-adjoint. Therefore, make sure that you
execute the forward model once before using it.



Solving the optimisation problem

Once the reduced functional is defined, we are only one step away from
solving the optimisation problem:

m_opt = minimize(reduced_functional)





or if a maximization problem is to be solved:

m_opt = maximize(reduced_functional)





By default, the optimisation problem is solved using limited memory
BFGS method with bound support.



Features

Important: Please make sure that you have scipy >= 0.11 installed.
Older scipy versions are only partly supported and require different
arguments. You can check your scipy version with

import scipy
print scipy.__version__






Choosing the optimisation algorithm

The optimisation module currently supports following optimisation
algorithms:


	CG:  The nonlinear conjugate gradient algorithm.


	BFGS:  The Broydenâ€“Fletcherâ€“Goldfarbâ€“Shanno (BFGS) method.


	L-BFGS-B:  A limited memory BFGS implementation with bound support.


	SLSQP:  The sequential least squares quadratic programming algorithm.


	TNC:  The truncated Newton algorithm with bound support.


	Nelder-Mead:  The Simplex algorithm (gradient-free).


	Newton-CG:  The truncated Newton algorithm.


	Anneal:  The simulated annealing method (gradient-free).


	COBYLA: Constrained optimization by linear approximation.


	Powell: The Powell’s method (gradient-free).




More details about the algorithms can be found on the scipy.optimize [http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize]
web page.

This list can be generated by calling:

print_optimization_methods()





By default, the framework uses the L-BFGS-B method.  A different
algorithm can be selected by adding the method argument to
minimize or maximize and providing one of the names from the list
above, e.g.:

m_opt = minimize(reduced_functional, method = 'SLSQP')







Callbacks

Often one wants to add a callback function that is executed after
every optimisation iteration, for example to save or plot the
functional or parameter values.  The optimisation framework provides
two ways how this can be achieved.


Option 1

One can attach callbacks functions to ReducedFunctional
object which are executed whenever the functional is evaluated.  There
are separate callbacks for functional evaluation and functional
gradient evaluation.

The following code example prints the functional value, functional
gradient and the associated scalar parameter:

def eval_cb(j, m):
  print "j = %f, m = %f." % (j, float(m))

def derivative_cb(j, dj, m):
  print "j = %f, dj = %f, m = %f." % (j, dj, float(m))

reduced_functional = ReducedFunctional(J, Control(nu),
                                       eval_cb = eval_cb,
                                       derivative_cb = derivative_cb)





In most gradient-based optimisation methods, the gradient is evaluated
at the beginning of a new optimisation iteration.  Hence, if one wants
to plot the progress of the optimisation, the derivative callback is
the natural choice.



Option 2

Alternatively, one can attach a callback function to the minimize (or
maximize) routine (see below). However, this callback takes only the
parameter value as an argument and therefore this method is not
suitable if one wants to plot the functional values during the
optimisation.

def iter_cb(m):
  print "m = ", m

m_opt = minimize(reduced_functional, method = 'SLSQP', callback = iter_cb)








Advanced optimisation options

Each optimisation algorithm supports different features and hence has
different configuration options.  To be able to access these options,
any arguments that are unknown to minimize or maximize will be
passed to the optimisation algorithm.

The most relevant options that can be used with all supported
optimisation methods are:


	tol: Tolerance for termination. For detailed control, use solver-specific options.


	options: A dictionary of solver options. All methods accept the following generic options:


	maxiter: Maximum number of iterations to perform.


	disp: Set to True to print convergence messages.


	gtol: The iteration loops stops if the gradient norm drops below this tolerance.








[image: more info] For method-specific options, see scipy’s function
show_options(‘minimize’, method).

For example:

m_opt = minimize(reduced_functional, method = 'SLSQP', tol = 1e-10, options = {'disp': True})







Multiple parameters

The optimisation module can handle multiple optimisation parameters.
Simply pass a list of parameters to ReducedFunctional:

reduced_functional = ReducedFunctional(J, [m1, m2, ...])
m_opt = minimize(reduced_functional)







Bounds

If the optimisation algorithm supports bounds of the form \(b_u <
m < b_u\) this functionality can be used by adding the bounds
argument to minimize or maximize.

reduced_functional = ReducedFunctional(J, m)
m_opt = minimize(reduced_functional, bounds = (m_lb, m_ub))





where m_lb and m_ub are objects of the same type than the
parameter that contain the lower and the upper bound values.

If the bounds are constants, a set of floats can be passed
alternatively, e.g.:

reduced_functional = ReducedFunctional(J, m)
m_opt = minimize(reduced_functional, bounds = (0.0, 1.0))





In the case where multiple parameters are optimised, the bound
parameter must consist of a list whose elements contains the bounds
for each parameter, i.e.

reduced_functional = ReducedFunctional(J, [m1, m2, ...])
m_opt = minimize(reduced_functional, bounds = [(m1_lb, m1_ub), (m2_lb, m2_ub), ...])





where each of the m1_lb, m1_ub, m2_lb, … are objects of the
same type as the parameter.




Example

The following example shows the code for solving the optimal control
of the heat equation:

""" Solves the optimal control problem for the heat equation """
from dolfin import *
from dolfin_adjoint import *

# Setup
n = 200
mesh = RectangleMesh(Point(-1, -1), Point(1, 1), n, n)
V = FunctionSpace(mesh, "CG", 1)
u = Function(V, name="State")
m = Function(V, name="Control")
v = TestFunction(V)

# Run the forward model once to create the simulation record
F = (inner(grad(u), grad(v)) - m*v)*dx
bc = DirichletBC(V, 0.0, "on_boundary")
solve(F == 0, u, bc)

# The functional of interest is the normed difference between desired
# and simulated temperature profile
x = SpatialCoordinate(mesh)
u_desired = exp(-1/(1-x[0]*x[0])-1/(1-x[1]*x[1]))
J = assemble((0.5*inner(u-u_desired, u-u_desired))*dx)

# Run the optimisation
reduced_functional = ReducedFunctional(J, Control(m))
# Make sure you have scipy >= 0.11 installed
m_opt = minimize(reduced_functional, method = "L-BFGS-B",
                 tol=2e-08, bounds = (-1, 1), options = {"disp": True})





[image: more info] Download the optimisation code.

This prints the following output that contains various information,
such as the final functional value:

$ python optimal_control.py
...
N    Tit     Tnf  Tnint  Skip  Nact     Projg        F
40401      6      8      6     0     0   8.869D-09   1.601D-05
F =   1.6009498922520026E-005

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL









            

          

      

      

    

  

  
    
    

    Parallel
    

    
 
  

    
      
          
            
  
Parallel

Applying algorithmic differentiation tools to parallel source code is still
a major research area, and most adjoint codes that work in parallel manually adjoin the parallel
communication sections of their code.

One of the major advantages of the new high-level abstraction used in dolfin-adjoint is that
the problem of parallelism in adjoint codes simply disappears: indeed, there is not a single
line of parallel-specific code in dolfin-adjoint or pyadjoint. For more details on how this
works, see the papers.

Therefore, if your forward model runs in parallel, your adjoint will also, with no modification.
For example, let us take the adjoint verification program from the section on verification:

$ mpiexec -n 4 python tutorial4.py
...
Computed residuals: [8.7896393841476643e-07, 2.2008124728377051e-07, 5.5062931909424556e-08, 1.3771065246938211e-08]
Computed residuals: [8.7896393841476643e-07, 2.2008124728377051e-07, 5.5062931909424556e-08, 1.3771065246938211e-08]
Computed residuals: [8.7896393841476643e-07, 2.2008124728377051e-07, 5.5062931909424556e-08, 1.3771065246938211e-08]
Computed residuals: [8.7896393841476643e-07, 2.2008124728377051e-07, 5.5062931909424556e-08, 1.3771065246938211e-08]
Computed convergence rates: [1.9977677554998587, 1.9988828855094791, 1.9994412684498588]
Computed convergence rates: [1.9977677554998587, 1.9988828855094791, 1.9994412684498588]
Computed convergence rates: [1.9977677554998587, 1.9988828855094791, 1.9994412684498588]
Computed convergence rates: [1.9977677554998587, 1.9988828855094791, 1.9994412684498588]





In the next section we discuss how to express functionals with different time dependencies.
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pyadjoint API reference

See also the dolfin-adjoint API reference.


Core classes


	
class pyadjoint.Tape(blocks=None, package_data=None)

	The tape.

The tape consists of blocks, Block instances.
Each block represents one operation in the forward model.


	
add_block(block)

	Adds a block to the tape and returns the index.






	
visualise(output='log', launch_tensorboard=False, open_in_browser=False)

	Makes a visualisation of the tape as a graph using TensorFlow
or GraphViz. (Default: Tensorflow). If output endswith .dot or
.pdf, Graphviz is used.


	Parameters

	
	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – Directory where event files for TensorBoard is
stored. Default log.


	launch_tensorboard (bool [https://docs.python.org/3/library/functions.html#bool]) – Launch TensorBoard in the background.
Default False.


	open_in_browser (bool [https://docs.python.org/3/library/functions.html#bool]) – Opens http://localhost:6006/ in a web
browser. Default False.













	
property progress_bar

	Specify a progress bar class to print during tape evaluation.

Setting this attribute to a subclass of progress.bar.Bar will
cause every evaluation of a reduced functional, adjoint, TLM or Hessian
to print a progress bar.

For example, the following code:

from progress.bar import FillingSquaresBar
tape = get_working_tape()
tape.progress_bar = FillingSquaresBar





will cause tape evaluations to print progress bars similar to the
following:

Evaluating functional ▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣ 100%
Evaluating adjoint ▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣▣ 100%





For information on available progress bar styles and their
configuration, see the progress package documentation [https://pypi.org/project/progress/].










	
class pyadjoint.Block(ad_block_tag=None)

	Base class for all Tape Block types.

Each instance of a Block type represents an elementary operation in the
forward model.


	Abstract methods
	evaluate_adj()






	
classmethod pop_kwargs(kwargs)

	Takes in a dictionary of keyword arguments,
and pops the ones used by the Block-subclass cls






	
add_dependency(dep, no_duplicates=False)

	Adds object to the block dependencies.

Will also save the output if it has not been saved before. Which should only happen if the
BlockVariable was not created by a Block (but by the user).


	Parameters

	
	dep (OverloadedType) – The object to be added.


	no_duplicates (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the dependency is only added if it is not already in the list.
Default is False.













	
add_output(obj)

	Adds object to the block output list.

Will also save the output.


	Parameters

	obj (BlockVariable) – The object to be added.










	
evaluate_adj(markings=False)

	Computes the adjoint action and stores the result in the adj_value attribute of the dependencies.

This method will by default call the evaluate_adj_component method for each dependency.


	Parameters

	markings (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then each block_variable will have set marked_in_path attribute indicating
whether their adjoint components are relevant for computing the final target adjoint values.
Default is False.










	
prepare_evaluate_adj(inputs, adj_inputs, relevant_dependencies)

	Runs preparations before evalute_adj_component is ran.

The return value is supplied to each of the subsequent evaluate_adj_component calls.
This method is intended to be overridden for blocks that require such preparations, by default there is none.


	Parameters

	
	inputs – The values of the inputs


	adj_inputs – The adjoint inputs


	relevant_dependencies – A list of the relevant block variables for evaluate_adj_component.






	Returns

	Anything. The returned value is supplied to evaluate_adj_component










	
evaluate_adj_component(inputs, adj_inputs, block_variable, idx, prepared=None)

	This method should be overridden.

The method should implement a routine for evaluating the adjoint of the block that corresponds to
one dependency.
If one considers the adjoint action a vector right multiplied with the Jacobian matrix,
then this method should return one entry in the resulting product, where the entry
returned is decided by the argument idx.


	Parameters

	
	inputs (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of the saved input values, determined by the dependencies list.


	adj_inputs (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of the adjoint input values, determined by the outputs list.


	block_variable (BlockVariable) – The block variable of the dependency corresponding to index idx.


	idx (int [https://docs.python.org/3/library/functions.html#int]) – The index of the component to compute.


	prepared (object [https://docs.python.org/3/library/functions.html#object]) – Anything returned by the prepare_evaluate_adj method. Default is None.






	Returns

	The resulting product.



	Return type

	An object of a type consistent with the adj_value type of block_variable










	
evaluate_tlm(markings=False)

	Computes the tangent linear action and stores the result in the tlm_value attribute of the outputs.

This method will by default call the evaluate_tlm_component method for each output.


	Parameters

	markings (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then each block_variable will have set marked_in_path attribute indicating
whether their tlm components are relevant for computing the final target tlm values.
Default is False.










	
prepare_evaluate_tlm(inputs, tlm_inputs, relevant_outputs)

	Runs preparations before evalute_tlm_component is ran.

The return value is supplied to each of the subsequent evaluate_tlm_component calls.
This method is intended to be overridden for blocks that require such preparations, by default there is none.


	Parameters

	
	inputs – The values of the inputs


	tlm_inputs – The tlm inputs


	relevant_outputs – A list of the relevant block variables for evaluate_tlm_component.






	Returns

	Anything. The returned value is supplied to evaluate_tlm_component










	
evaluate_tlm_component(inputs, tlm_inputs, block_variable, idx, prepared=None)

	This method should be overridden.

The method should implement a routine for computing the tangent linear model of the block that corresponds to
one output.
If one considers the tangent linear action as a Jacobian matrix multiplied with a vector,
then this method should return one entry in the resulting product, where the entry returned
is decided by the argument idx.


	Parameters

	
	inputs (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of the saved input values, determined by the dependencies list.


	tlm_inputs (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of the tlm input values, determined by the dependencies list.


	block_variable (BlockVariable) – The block variable of the output corresponding to index idx.


	idx (int [https://docs.python.org/3/library/functions.html#int]) – The index of the component to compute.


	prepared (object [https://docs.python.org/3/library/functions.html#object]) – Anything returned by the prepare_evaluate_tlm method. Default is None.






	Returns

	The resulting product.



	Return type

	An object of the same type as block_variable.saved_output










	
evaluate_hessian(markings=False)

	




	
prepare_evaluate_hessian(inputs, hessian_inputs, adj_inputs, relevant_dependencies)

	Runs preparations before evalute_hessian_component is ran for each relevant dependency.

The return value is supplied to each of the subsequent evaluate_hessian_component calls.
This method is intended to be overridden for blocks that require such preparations, by default there is none.


	Parameters

	
	inputs – The values of the inputs


	hessian_inputs – The hessian inputs


	adj_inputs – The adjoint inputs


	relevant_dependencies – A list of the relevant block variables for evaluate_hessian_component.






	Returns

	Anything. The returned value is supplied to evaluate_hessian_component










	
evaluate_hessian_component(inputs, hessian_inputs, adj_inputs, block_variable, idx, relevant_dependencies, prepared=None)

	This method must be overridden.

The method should implement a routine for evaluating the hessian of the block.
It is preferable that a “Forward-over-Reverse” scheme is used. Thus the hessians
are evaluated in reverse (starting with the last block on the tape).






	
recompute(markings=False)

	
	Recomputes the overloaded function with new inputs
	and stores the results in the checkpoint attribute of the outputs.





This method will by default call the recompute_component method for each output.


	Parameters

	markings (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then each block_variable will have set marked_in_path attribute indicating
whether their checkpoints need to be recomputed for recomputing the final target function value.
Default is False.










	
prepare_recompute_component(inputs, relevant_outputs)

	Runs preparations before recompute_component is ran.

The return value is supplied to each of the subsequent recompute_component calls.
This method is intended to be overridden for blocks that require such preparations, by default there is none.


	Parameters

	
	inputs – The values of the inputs


	relevant_outputs – A list of the relevant block variables for recompute_component.






	Returns

	Anything. The returned value is supplied to recompute_component










	
recompute_component(inputs, block_variable, idx, prepared)

	This method must be overridden.

The method should implement a routine for recomputing one output of the block in the forward computations.
The output to recompute is determined by the idx argument, which corresponds to the index
of the output in the outputs list.
If the block only has a single output, then idx will always be 0.


	Parameters

	
	inputs (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of the saved input values, determined by the dependencies list.


	block_variable (BlockVariable) – The block variable of the output corresponding to index idx.


	idx (int [https://docs.python.org/3/library/functions.html#int]) – The index of the output to compute.


	prepared (object [https://docs.python.org/3/library/functions.html#object]) – Anything returned by the prepare_recompute_component method. Default is None.






	Returns

	An object of the same type as block_variable.checkpoint which is determined by
OverloadedType._ad_create_checkpoint (often the same as block_variable.saved_output): The new output.














	
class pyadjoint.block_variable.BlockVariable(output)

	References a block output variable.






	
class pyadjoint.OverloadedType(*args, **kwargs)

	Base class for OverloadedType types.

The purpose of each OverloadedType is to extend a type such that
it can be referenced by blocks as well as overload basic mathematical
operations such as __mul__, __add__, where they are needed.


	
classmethod _ad_init_object(obj)

	This method will often need to be overridden.

The method should implement a way to reconstruct a new overloaded instance
from a (possibly) not-overloaded instance.


	Parameters

	obj – An instance of the original type



	Returns

	An overloaded instance which is considered the same as obj.



	Return type

	OverloadedType










	
_ad_convert_type(value, options={})

	This method must be overridden.

Should implement a way to convert the result of an adjoint computation, value,
into the same type as self.


	Parameters

	
	value (Any) – The value to convert. Should be a result of an adjoint computation.


	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary with options that may be supplied by the user.
If the convert type functionality offers some options on how to convert,
this is the dictionary that should be used.
For an example see fenics_adjoint.types.Function






	Returns

	An instance of the same type as self.



	Return type

	OverloadedType










	
_ad_create_checkpoint()

	This method must be overridden.

Should implement a way to create a checkpoint for the overloaded object.
The checkpoint should be returned and possible to restore from in the
corresponding _ad_restore_at_checkpoint method.


	Returns

	
	A checkpoint. Could be of any type, but must be possible
	to restore an object from that point.









	Return type

	object [https://docs.python.org/3/library/functions.html#object]










	
_ad_restore_at_checkpoint(checkpoint)

	This method must be overridden.

Should implement a way to restore the object at supplied checkpoint.
The checkpoint is created from the _ad_create_checkpoint method.


	Returns

	The object with same state as at the supplied checkpoint.



	Return type

	OverloadedType










	
_ad_mul(other)

	This method must be overridden.

The method should implement a routine for multiplying the overloaded object
with another object, and return an object of the same type as self.


	Parameters

	other (object [https://docs.python.org/3/library/functions.html#object]) – The object to be multiplied with this.
Should at the very least accept float [https://docs.python.org/3/library/functions.html#float] and integer objects.



	Returns

	
	The product of the two objects represented as
	an instance of the same subclass of OverloadedType as the type
of self.









	Return type

	OverloadedType










	
_ad_imul(other)

	In-place multiplies self with other.

This method should be overridden if the default behaviour is not compatible with this OverloadedType.


	Parameters

	other (object [https://docs.python.org/3/library/functions.html#object]) – The object to multiply self with.
Should at the very least accept float objects.



	Returns

	None










	
_ad_add(other)

	This method must be overridden.

The method should implement a routine for adding the overloaded object
with another object, and return an object of the same type as self.


	Parameters

	other (object [https://docs.python.org/3/library/functions.html#object]) – The object to be added with this.
Should at the very least accept objects of the same type as self.



	Returns

	
	The sum of the two objects represented as
	an instance of the same subclass of OverloadedType as the type
of self.









	Return type

	OverloadedType










	
_ad_iadd(other)

	In-place adds other to self.

This method should be overridden if the default behaviour is not compatible with this OverloadedType.


	Parameters

	other (object [https://docs.python.org/3/library/functions.html#object]) – The object to multiply self with.
Should at the very least accept objects of the same type as self.



	Returns

	None










	
_ad_dot(other)

	This method must be overridden.

The method should implement a routine for computing the dot product of
the overloaded object with another object of the same type, and return
a float [https://docs.python.org/3/library/functions.html#float].


	Parameters

	other (OverloadedType) – The object to compute the dot product with.
Should be of the same type as self.



	Returns

	The dot product of the two objects.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
static _ad_assign_numpy(dst, src, offset)

	This method must be overridden.

The method should implement a routine for assigning the values from
a numpy array src to the checkpoint dst. dst should be an instance
of the implementing class.


	Parameters

	
	dst (obj) – The object which should be assigned new values.
The type will most likely be an OverloadedType or similar.


	src (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The numpy array to use as a source for the assignment.
src should have the same underlying dimensions as dst.


	offset (int [https://docs.python.org/3/library/functions.html#int]) – Start reading dst from offset.






	Returns

	
	obj: The dst object. If dst is mutable it is preferred to be the same
	instance as supplied to the function call. Otherwise a new instance
must be initialized and returned with the correct src values.





int: The new offset.





	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
static _ad_to_list(m)

	This method must be overridden.

The method should implement a routine for converting m into a
list type. m should be an instance of the same type as the class
this method is implemented in. Although maybe the backend version
of this class, meaning it is not necessarily an OverloadedType.


	Parameters

	m (obj) – The object to be converted into a list.



	Returns

	A list representation of the data structure of m.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
_ad_copy()

	This method must be overridden.

The method should implement a routine for copying itself.


	Returns

	A (deep) copy of self.



	Return type

	OverloadedType










	
_ad_dim()

	This method must be overridden.

The method should implement a routine for computing the number of components
of self.


	Returns

	The number of components of self.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]















Core utility functions


	
pyadjoint.get_working_tape()

	




	
pyadjoint.set_working_tape(tape=None, **tape_kwargs)

	A context manager whithin which a new tape is set as the working tape.
This context manager can also be used in an imperative manner.

Example usage:



	Set a new tape as the working tape:


set_working_tape(Tape())










	Set a local tape within a context manager:


with set_working_tape() as tape:
    ...




















	
pyadjoint.tape.no_annotations(function)

	Decorator to turn off annotation for the decorated function.






	
class pyadjoint.stop_annotating(modifies=None)

	A context manager within which annotation is stopped.


	Parameters

	modifies (OverloadedType or list [https://docs.python.org/3/library/stdtypes.html#list][OverloadedType]) – One or more
variables which appear in the tape and whose values are to be
changed inside the context manager.





The modifies argument is intended to be used by user code which
changes the value of inputs to the adjoint calculation such as time varying
forcings. Its effect is to create a new block variable for each of the
modified variables at the end of the context manager.






	
pyadjoint.annotate_tape(kwargs=None)

	Return True if annotation flag is on, and False if not.

If kwargs is given, the function will try to extract the
annotate keyword. If the annotate keyword is not present it defaults to True.
If annotation has been paused, then it will always return False.


	Parameters

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of keyword arguments to extract from.
Note that this should be passed as a dictionary and not actual keyword arguments.





Returns: bool






	
pyadjoint.overloaded_type.create_overloaded_object(obj, suppress_warning=False)

	Creates an OverloadedType instance corresponding obj.

If an OverloadedType corresponding to obj has not been registered
through register_overloaded_type, a RuntimeWarning will be issued.


	Parameters

	
	obj (object [https://docs.python.org/3/library/functions.html#object]) – The object to create an overloaded instance from.


	suppress_warning (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When set to True,
suppresses warning message when a suitable overloaded class is not found.
Default False.






	Returns

	OverloadedType










	
pyadjoint.overloaded_type.register_overloaded_type(overloaded_type, classes=None)

	Register an overloaded type for use in create_overloaded_object

Overloaded types used with this function should have implemented a classmethod _ad_create_object.
For usage as a decorator, OverloadedType should be the first base of overloaded_type, and classes
the second base.


	Parameters

	
	overloaded_type (type [https://docs.python.org/3/library/functions.html#type]) – The OverloadedType subclass to register.


	classes (type [https://docs.python.org/3/library/functions.html#type], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – The original class/classes that this OverloadedType subclass


	overloads. – 






	Returns

	returns only overloaded_type such that it can be used as a decorator.



	Return type

	type [https://docs.python.org/3/library/functions.html#type]











User interface


	
class pyadjoint.Control(control)

	Defines a control variable from an OverloadedType.

The control object references a specific node on the Tape.
For mutable OverloadedType instances the Control only represents
the value at the time of initialization.

Example

Given a mutable OverloadedType instance u.

>>> u = MutableFloat(1.0)
>>> float(u)
1.0
>>> c1 = Control(u)
>>> u.add_in_place(2.0)
>>> c2 = Control(u)
>>> float(u)
3.0
>>> c1.data()
1.0
>>> c2.data()
3.0





Now c1 represents the node prior to the add_in_place Block,
while c2 represents the node after the add_in_place Block.
Creating a ReducedFunctional with c2 as Control results in
a reduced problem without the add_in_place Block, while a ReducedFunctional
with c1 as Control results in a forward model including the add_in_place.


	Parameters

	control (OverloadedType) – The OverloadedType instance to define this control from.










	
pyadjoint.compute_gradient(J, m, options=None, tape=None, adj_value=1.0)

	Compute the gradient of J with respect to the initialisation value of m,
that is the value of m at its creation.


	Parameters

	
	J (AdjFloat) – The objective functional.


	m (list [https://docs.python.org/3/library/stdtypes.html#list] or instance of Control) – The (list of) controls.


	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of options. To find a list of available options
have a look at the specific control type.


	tape – The tape to use. Default is the current tape.






	Returns

	
	The derivative with respect to the control. Should be an instance of the same type as
	the control.









	Return type

	OverloadedType










	
pyadjoint.compute_hessian(J, m, m_dot, options=None, tape=None)

	Compute the Hessian of J in a direction m_dot at the current value of m


	Parameters

	
	J (AdjFloat) – The objective functional.


	m (list [https://docs.python.org/3/library/stdtypes.html#list] or instance of Control) – The (list of) controls.


	m_dot (list [https://docs.python.org/3/library/stdtypes.html#list] or instance of the control type) – The direction in which to compute the Hessian.


	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of options. To find a list of available options
have a look at the specific control type.


	tape – The tape to use. Default is the current tape.






	Returns

	
	The second derivative with respect to the control in direction m_dot. Should be an instance of
	the same type as the control.









	Return type

	OverloadedType










	
class pyadjoint.placeholder.Placeholder(obj)

	A class that functions as a placeholder for block variables (for dependencies).

This means that you can replace the dependency of a Block with another block variable
on the fly. Do note that Block outputs can not be placeholders.

The placeholders are useful when you require earlier values in the computational graph
to be values computed later in the computational graph from the previous recomputation.
This can be the case for the initial guess for iterative solvers.
If the recomputations are expected to only slightly change the solution,
then using the previously found solution as initial guess can significantly speed up the recomputation.


	Usage:
	>>> u = OverloadedType()
>>> p = Placeholder(u)
>>> v = annotated_operator(u)
>>> p.set_value(v)





Each recomputation will now use the previously computed v as input
to annotated_operator.










	
class pyadjoint.ReducedFunctional(functional, controls, derivative_components=None, scale=1.0, tape=None, eval_cb_pre=<function ReducedFunctional.<lambda>>, eval_cb_post=<function ReducedFunctional.<lambda>>, derivative_cb_pre=<function ReducedFunctional.<lambda>>, derivative_cb_post=<function ReducedFunctional.<lambda>>, hessian_cb_pre=<function ReducedFunctional.<lambda>>, hessian_cb_post=<function ReducedFunctional.<lambda>>)

	Class representing the reduced functional.

A reduced functional maps a control value to the provided functional.
It may also be used to compute the derivative of the functional with
respect to the control.


	Parameters

	
	functional (OverloadedType) – An instance of an OverloadedType,
usually AdjFloat. This should be the return value of the
functional you want to reduce.


	controls (list [https://docs.python.org/3/library/stdtypes.html#list][Control]) – A list of Control instances, which you want
to map to the functional. It is also possible to supply a single
Control instance instead of a list.


	derivative_components (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int]) – The indices of the controls with
respect to which to take the derivative. By default, the derivative
is taken with respect to all controls. If present, it overwrites
derivative_cb_pre and derivative_cb_post.


	derivative_cb_pre (function) – Callback function before evaluating
derivatives. Input is a list of Controls.
Should return a list of Controls (usually the same
list as the input) to be passed to compute_gradient.


	derivative_cb_post (function) – Callback function after evaluating
derivatives.  Inputs are: functional.block_variable.checkpoint,
list of functional derivatives, list of functional values.
Should return a list of derivatives (usually the same
list as the input) to be returned from self.derivative.









	
__call__(values)

	Computes the reduced functional with supplied control value.


	Parameters

	values ([OverloadedType]) – If you have multiple controls this should be a list of
new values for each control in the order you listed the controls to the constructor.
If you have a single control it can either be a list or a single object.
Each new value should have the same type as the corresponding control.



	Returns

	
	The computed value. Typically of instance
	of AdjFloat.









	Return type

	OverloadedType










	
derivative(adj_input=1.0, options={})

	Returns the derivative of the functional w.r.t. the control.
Using the adjoint method, the derivative of the functional with
respect to the control, around the last supplied value of the
control, is computed and returned.


	Parameters

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of options. To find a list of
available options have a look at the specific control type.



	Returns

	
	The derivative with respect to the control.
	Should be an instance of the same type as the control.









	Return type

	OverloadedType










	
hessian(m_dot, options={})

	Returns the action of the Hessian of the functional w.r.t. the control on a vector m_dot.

Using the second-order adjoint method, the action of the Hessian of the
functional with respect to the control, around the last supplied value
of the control, is computed and returned.


	Parameters

	
	m_dot ([OverloadedType]) – The direction in which to compute the
action of the Hessian.


	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of options. To find a list of
available options have a look at the specific control type.






	Returns

	
	The action of the Hessian in the direction m_dot.
	Should be an instance of the same type as the control.









	Return type

	OverloadedType










	
optimize_tape()

	








	
class pyadjoint.reduced_functional_numpy.ReducedFunctionalNumPy(functional, controls=None, tape=None)

	This class implements the reduced functional for given functional and
controls based on numpy data structures.

This “NumPy version” of the pyadjoint.ReducedFunctional is created from
an existing ReducedFunctional object:
rf_np = ReducedFunctionalNumPy(rf = rf)






	
pyadjoint.taylor_test(J, m, h, dJdm=None, Hm=0)

	Run a taylor test on the functional J around point m in direction h.

Given a functional J, a point in control space m, and a direction in
control space h, the function computes the taylor remainders and
returns the convergence rate.


	Parameters

	
	J (reduced_functional.ReducedFunctional) – The functional to evaluate the taylor remainders of.
Must be an instance of ReducedFunctional, or something with a similar
interface.


	m (overloaded_type.OverloadedType) – The expansion points in control space. Must be of same type as the
control.


	h (overloaded_type.OverloadedType) – The direction of perturbations. Must be of same type as
the control.






	Returns

	The smallest computed convergence rate of the tested perturbations.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]











Overloaded objects


	
class pyadjoint.AdjFloat(*args, **kwargs)
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Documentation for pyadjoint

pyadjoint is a generic algorithmic differentiation framework.
The aim of this page is to introduce the reader to how pyadjoint works and how it can be used.
It can be useful to also have a look at the pyadjoint API.
We stress that this is not an algorithmic differentiation tutorial.
For an introduction to algorithmic differentiation see for example the book by Naumann [http://dx.doi.org/10.1137/1.9781611972078]


The core idea

In general, we will be interested in differentiating some output vector \(y \in \mathbb{R}^m\) with respect to
some input vector \(x \in \mathbb{R}^n\). Assuming we can decompose the forward computations into


\[y = f(x) = g_k \circ g_{k-1} \circ \cdots g_{1}(x),\]

then the derivative of the output in direction \(\hat{x}\) is


\[\frac{\mathrm{d}y}{\mathrm{d}x} \hat{x} = \frac{\partial g_{k}(w_{k-1})}{\partial w_{k-1}}
                                  \frac{\partial g_{k-1}(w_{k-2})}{\partial w_{k-2}}
                                  \cdots
                                  \frac{\partial g_{2}(w_1)}{\partial w_1}
                                  \frac{\partial g_{1}(x)}{\partial x} \hat{x},\]

for some intermediate solutions \(w_i, i = 1, 2, ..., k-1\).
In reverse mode algorithmic differentiation, we are interested in the adjoints:


\[\frac{\mathrm{d}y}{\mathrm{d}x}^* \bar{y} = \frac{\partial g_{1}(x)}{\partial x}^*
                                            \frac{\partial g_{2}(w_1)}{\partial w_1}^*
                                            \cdots
                                            \frac{\partial g_{k-1}(w_{k-2})}{\partial w_{k-2}}^*
                                            \frac{\partial g_{k}(w_{k-1})}{\partial w_{k-1}}^* \bar{y},\]

for some weights \(\bar{y} \in \mathbb{R}^m\).
In order to compute the adjoints we must somehow remember all the operations performed in the forward computations,
and either remember or recompute the intermediate variables.

In pyadjoint, the Tape class is responsible for remembering these operations.
The operations are stored in a list [https://docs.python.org/3/library/stdtypes.html#list], and can be thought of as nodes in a directed acyclic graph.
The Tape objects thus offer ways to do graph manipulations and visualisations.

The operations or nodes are represented by instances of subclasses of Block.
These subclasses implement operation-specific methods, while the parent class, Block,
implements common methods for use with the tape.
These Block instances also keep track of their inputs and outputs,
which are represented by BlockVariable instances.

For all this to be set up correctly, we require a way to populate the Tape
and instantiate Block objects.
To achieve this, we create overloaded functions that replace original functions and
that are responsible for both of these tasks.
An overloaded function should, for the user, act exactly as the original function.

In addition, to deal with mutating data objects used as inputs/outputs,
all data types should have an overloaded counterpart.
The overloaded data-types should inherit from both the original data-type and the pyadjoint class OverloadedType.
OverloadedType ensures that the data-type has a BlockVariable instance attached,
and declares some abstract methods for interaction with pyadjoint API functions that should be implemented by
the specific data-types.

The core classes of pyadjoint are thus Tape, Block, BlockVariable and OverloadedType.
We will now discuss each class individually, starting with OverloadedType.



OverloadedType

The pyadjoint user-API provides several useful functions that act on the tape.
For example, the function taylor_test() for verifying implementation, and minimize() in the optimization subpackage for
minimizing functionals. To allow these functions to work without any knowledge of the structure of the data-types,
some logic is moved into abstract methods of the OverloadedType, and are expected to be implemented
for the individual data-types. At pyadjoint API you can see the individual abstract methods.
Some methods are more important than others, because some of the abstract methods are only required for specific functions,
while for instance OverloadedType._ad_create_checkpoint() and OverloadedType._ad_restore_at_checkpoint() are required for just working with the tape at all.

The OverloadedType class also has a single attribute, block_variable, which holds an instance of BlockVariable.
In addition it defines the method OverloadedType.create_block_variable() which sets block_variable attribute to a new
BlockVariable instance, and returns it. This is used when adding the data-type as an output to a block.
More information on that below.

To ensure that all pyadjoint specific methods are available, all data-type instances exposed to the end-user
must be converted to overloaded versions.
This is achieved through the create_overloaded_object() function,
which combines a dictionary mapping original data-types to overloaded data-types, and the individually implemented
OverloadedType._ad_init_object() method.

To populate the dictionary map, one must call register_overloaded_type().
This can conveniently be accomplished by using the function as a decorator when defining the overloaded data-type.
In that case, you must use OverloadedType as the first base class, and the original data-type as second base class.
Apart from implementing the abstract methods, one must also remember to call the constructor OverloadedType.__init__()
in the overloaded data-type constructor.



BlockVariable

To track intermediate solutions, pyadjoint employs the class BlockVariable.
Storing interm_sol = y does not guarantee that interm_sol remains the same until the end
of the program execution if y is a mutable type.
Thus, to ensure that the right values are kept, we create copies of the values used as input/output to operations.

Every time an instance of a data-type changes values, it should be assigned a new BlockVariable.
Hence, BlockVariable can be thought of as an identifier for a specific version of a specific data-type object.

The BlockVariable class is quite simple.
It holds a reference to the OverloadedType instance that created it, a checkpoint,
some attributes for storing values in adjoint and tangent linear sweeps, and some flags.

The checkpoint is a copy of the values of the data-type (OverloadedType) instance.
It does not have to be an exact copy of the instance.
All that is required is that it is possible to restore an instance of the same type with the same values
at a later point.
This is implemented in the OverloadedType._ad_create_checkpoint() and OverloadedType._ad_restore_at_checkpoint() methods in the OverloadedType class.
As an example, if a data-type was a function parameterised by a float, then a checkpont only requires storing this float,
and the restoring method can create the same function using the same parameter value.

The attribute tlm_value holds the derivative direction for the forward mode AD sweep.
This should be an instance of the same type as the corresponding OverloadedType instance.

The attribute adj_value holds the computed adjoint derivative action (can be thought of as the gradient).
The type is in theory up to the block implementations, but to ensure compatibility across different blocks it should
be an array-like type, such as a numpy array.
Also it must be ensured that the choice of inner product is consistent between blocks.
Thus, it is recommended that all blocks employ the \(l^2\) inner product, i.e \((u, v)_{l^2} = u^Tv\)
where \(u, v \in \mathbb{R}^n\).
If the gradient with some other inner-product is desired, one can use Riesz representation theorem
in the OverloadedType._ad_convert_type() method of OverloadedType.

The attribute hessian_value holds the computed hessian vector action.
This should have the same type as adj_value.



Block

Before we go into how Blocks are implemented, let us take a look at a basic implementation of an overloaded function.
Instead of using overload_function() we manually define the overloaded function in a similar way that the
pyadjoint function would automatically do for you.

backend_example_function = example_function
def example_function(*args, **kwargs):
    annotate = annotate_tape(kwargs)
    if annotate:
        tape = get_working_tape()
        b_kwargs = ExampleBlock.pop_kwargs(kwargs)
        b_kwargs.update(kwargs)
        block = ExampleBlock(*args, **b_kwargs)
        tape.add_block(block)

    with stop_annotating():
        output = backend_example_function(*args, **kwargs)
    output = create_overloaded_object(output)

    if annotate:
        block.add_output(output.create_block_variable())

    return output





Let us go line by line through this. First we store a reference to the original function,
then we start defining the overloaded function.
Since overloaded functions can take some extra keyword arguments, one should use varying length keyword arguments
in the function definition.
Then we pass the keyword arguments to the pyadjoint function annotate_tape().
This will try to pop the keyword argument annotate from the keyword arguments dictionary,
and return whether annotation is turned on. If annotation is turned on, we must add the operation to the tape.
We first fetch the current tape using get_working_tape(), then we pop block-specific keyword arguments
and merge them with the actual keyword arguments. These are then used when we instantiate the block, which
in our example is ExampleBlock. Then the block instance is added to the tape.

No matter if we annotate or not, we must run the original function.
To prevent the inner code of the original function to be annotated, we use the pyadjoint context manager stop_annotating().
After calling the original function, we convert the returned output to OverloadedType.
Finally, if we are annotating then we create a new block variable for the output and add it as output of the block.

We now focus on the implementation of the block (ExampleBlock in the case above).
The implementation of the constructor of the Block is largely up to the implementing user,
as the main requirement is that the overloaded function and the block constructor are on the same page
regarding how inputs/outputs are passed and what should be handled in the constructor and what is handled in the overloaded function.

For our example above, the constructor must first call the parent-class constructor, and also add the dependencies (inputs)
using the Block.add_dependency() method. This method takes a block variable as input and appends it to a list [https://docs.python.org/3/library/stdtypes.html#list],
and thus it is important that all objects that are to be added to the dependencies should be an overloaded type.
Below we show an example of a block constructor.

class ExampleBlock(Block):
    def __init__(self, *args, **kwargs):
    super(ExampleBlock, self).__init__()
    self.kwargs = kwargs
    for arg in args:
        self.add_dependency(arg.block_variable)





Note that not necessarily all arguments need to be dependencies.
Only the inputs for which we wish to enable derivatives are strictly needed as dependencies.

Similarly to the dependencies, the output is also a list of block variables.
Although it is often not needed, we can obtain the list of dependencies or outputs using the Block.get_dependencies() and Block.get_outputs() methods.
It is important to note that the block only stores BlockVariable instances in these lists, and that to get the real values you need to access attributes of the BlockVariable.
For example, to restore the checkpoint and get the restored object, use x = block_variable.saved_output.

The core methods of Block that allow for recomputations and derivatives to be computed are
Block.recompute(), Block.evaluate_adj(), Block.evaluate_tlm() and Block.evaluate_hessian().
These methods are implemented in the abstract Block class, and by default delegate
to the abstract methods *_component() (i.e Block.evaluate_adj_component()).

We first inspect how Block.recompute() works.
The core idea is to use dependency checkpoints to compute new outputs and overwrite the output checkpoints with these new values.
In the most basic form, the recompute method can be implemented as follows.

def recompute(self, markings=False):
    x = self.get_dependencies()[0].saved_output
    y = backend_example_function(x)
    self.get_outputs()[0].checkpoint = y





Here we have assumed that there is only one real dependency, hence self.get_dependencies() is a list of
length one. Similarly we assume that this is the only input needed to the original function, and that the
output is given explicitly through the return value of the original function. Lastly, we assume that the
block has only one output and thus the length of self.get_outputs() is one.

The optional keyword argument markings is set to True [https://docs.python.org/3/library/constants.html#True] when relevant block variables have been flagged.
In that case, the recompute implementation can do optimizations by not recomputing outputs that are not relevant for
what the user is interested in.

This unwrapping and working with attributes of BlockVariable instances may seem unnecessarily complicated,
but it offers great flexibility.
The Block.recompute_component() method tries to impose a more rigid structure,
but can be replaced by individual blocks by just overloading the Block.recompute() method directly.

The following is an example of the same implementation with Block.recompute_component()

def recompute_component(self, inputs, block_variable, idx, prepared):
    return backend_example_function(inputs[0])





Here the typically important variables are already sorted for you. inputs is a list of the new input values
i.e the same as making a list of the saved_output of all the dependencies.
Furthermore, each call to the Block.recompute_compontent() method is only for recomputing a single output,
thus alleviating the need for code that optimizes based on block variable flags when markings == True.
The block_variable parameter is the block variable of the output to recompute, while the idx is
the index of the output in the self.get_outputs() list.

Sometimes you might want to do something once, that is common for all output recomputations.
For example, your original function might return all the outputs, or you must prepare the input in a special way.
Instead of doing this repeatedly for each call to Block.recompute_component(),
one can implement the method Block.prepare_recompute_component(). This method by default returns None [https://docs.python.org/3/library/constants.html#None],
but can return anything. The return value is supplied to the prepared argument of Block.recompute_component().
For each time Block.recompute() is called, Block.prepare_recompute_component() is called once and
Block.recompute_component() is called once for each relevant output.

Now we take a look at Block.evaluate_tlm(). This method is used for the forward AD sweep and should
compute the Jacobian vector product. More precisely, using the decomposition above, the method should compute


\[\hat{w}_{i + 1} = \frac{\partial g_{i + 1}(w_i)}{\partial w_i} \hat{w}_i\]

where \(\hat{w}_i\) is some derivative direction, and \(g_{i+1}\) is the operation represented by the block.
In Block.evaluate_tlm(), \(\hat{w}_i\) has the same type as the function inputs (block dependencies) \(w_{i}\).
The following is a sketch of how Block.evaluate_tlm() can be implemented

def evaluate_tlm(self, markings=False):
    x = self.get_dependencies()[0].saved_output
    x_hat = self.get_dependencies()[0].tlm_value

    y_hat = derivative_example_function(x, x_hat)

    self.get_outputs()[0].add_tlm_output(y_hat)





We have again assumed that the example function only has one input and one output.
Furthermore, we assume that we have implemented some derivative function in derivative_example_function().
The last line is the way to propagate the derivative directions forward in the tape.
It essentially just adds the value to the tlm_value attribute of the output block variable,
so that the next block can fetch it using tlm_value.

As with the recompute method, pyadjoint also offers a default Block.evaluate_tlm() implementation,
that delegates to Block.evaluate_tlm_component() for each output.
In our case, with only one output, the component method could look like this

def evaluate_tlm_component(self, inputs, tlm_inputs, block_variable, idx, prepared):
    return derivative_example_function(inputs[0], tlm_inputs[0])





The prepared parameter can be populated in the Block.prepare_evaluate_tlm() method.

Block.evaluate_adj() is responsible for computing the adjoint action or vector Jacobian product.
Using the notation above, Block.evaluate_adj() should compute the following


\[\bar{w}_{i - 1} = \frac{\partial g_{i}(w_{i-1})}{\partial w_{i-1}}^* \bar{w}_i\]

where the adjoint operator should be defined through the \(l^2\) inner product.
Assuming \(g_{i} : \mathbb{R}^n \rightarrow \mathbb{R}^m\), then the adjoint should be defined by


\[(\frac{\partial g_{i}(w_{i-1})}{\partial w_{i-1}} u, v)_{\mathbb{R}^m} = (u, \frac{\partial g_{i}(w_{i-1})}{\partial w_{i-1}}^* v)_{\mathbb{R}^n}\]

for all \(u \in \mathbb{R}^n, v \in \mathbb{R}^m\). Where \((a, b)_{\mathbb{R}^k} = a^Tb\) for all \(a,b \in \mathbb{R}^k, k \in \mathbb{N}\).

Using the same assumptions as earlier the implementation could look similar to this

def evaluate_adj(self, markings=False):
    y_bar = self.get_outputs()[0].adj_value
    x = self.get_dependencies()[0].saved_output

    x_bar = derivative_adj_example_function(x, y_bar)

    self.get_dependencies()[0].add_adj_output(x_bar)





There is also a default implementation for Block.evaluate_adj(),
that calls the method Block.evaluate_adj_component() for each relevant dependency.
This method could be implemented as follows

def evaluate_adj_component(self, inputs, adj_inputs, block_variable, idx, prepared):
    return derivative_adj_example_function(inputs[0], adj_inputs[0])





If there is any common computations across dependencies, these can be implemented in
Block.prepare_evaluate_adj().



Tape

As we have seen, we store the created block instances in a Tape instance.
Each Tape instance holds a list [https://docs.python.org/3/library/stdtypes.html#list] of the block instances added to it.
There can exists multiple Tape instances, but only one can be the current working tape.
The working tape is the tape which is annotated to, i.e in which we will store any block instances created.
It is also the tape that is by default interacted with when you run different pyadjoint functions that rely on
a tape. The current working tape can be set and retrieved with the functions set_working_tape() and
get_working_tape().

Annotation can be temporarily disabled using pause_annotation() and enabled again using continue_annotation().
Note that if you call pause_annotation() twice, then continue_annotation() must be called twice
to enable annotation. Due to this, the recommended annotation control functions are stop_annotating and no_annotations().
stop_annotating is a context manager and should be used as follows

with stop_annotating():
    # Code without annotation
    ...





no_annotations() is a decorator for disabling annotation within functions or methods.
To check if annotation is enabled, use the function annotate_tape().

Apart from storing the block instances, the Tape class offers a few methods for interaction
with the computational graph. Tape.visualise() can be used to visualise the computational graph
in a graph format. This can be useful for debugging purposes. Tape.optimize() offers a way to
remove block instances that are not required for a reduced function. For optimizing the tape based on either
a reduced output or input space, use the methods Tape.optimize_for_functionals() and Tape.optimize_for_controls().
Because these optimize methods mutate the tape, it can be useful to use the Tape.copy() method to
keep a copy of the original list of block instances.
To add block instances to the tape and retrieve the list of block instances, use Tape.add_block() and Tape.get_blocks().

Other Tape methods are primarily used internally and users will rarely access these directly.
However, it can be useful to know and use these methods when implementing custom overloaded functions.
The tape instance methods that activate the Block.evaluate_adj() and Block.evaluate_tlm() methods are
Tape.evaluate_adj(), Tape.evaluate_tlm().
These methods just iterate over all the blocks and call the corresponding evaluate method of the block.
Usually some initialization is required, which is why these methods will likely not be called directly by the user.
For example, for the backward sweep (Tape.evaluate_adj()) to work, you must initialize your functional
adjoint value with the value 1. This is the default behaviour of the compute_gradient() function.

Similarly, to run the Tape.evaluate_tlm() properly, a direction, \(\hat{x}\), must be specified.
This can be done as follows

y = example_function(x)
x.block_variable.tlm_value = x_hat
tape = get_working_tape()
tape.evaluate_tlm()
dydx = y.block_variable.tlm_value





In a similar way, one can compute the gradient without using compute_gradient()

y = example_function(x)
y.block_variable.adj_value = y_bar
tape = get_working_tape()
tape.evaluate_adj()
grady = x.block_variable.adj_value





Where y_bar could be 1 if y is a float.
However, compute_gradient() also performs other convenient operations.
For example, it utilizes the markings flag in the Block.evaluate_adj() method.
The markings are applied using the context manager Tape.marked_nodes().
In addition, compute_gradient() converts adj_value to overloaded types using the
OverloadedType._ad_convert_type() method.
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Verification


Taylor remainder convergence test

The fundamental tool used in verification of gradients is the
Taylor remainder convergence test. Let \(\widehat{J}(m)\) be the functional, considered
as a pure function of the parameter of interest,
let \(\nabla \widehat{J}\) be its gradient, and let \(\delta m\) be a perturbation to
\(m\). This test is based on the observation that


\[\left|\widehat{J}(m + h\delta m) - \widehat{J}(m)\right| \rightarrow 0 \quad \mathrm{at} \ O(h),\]

but that


\[\left|\widehat{J}(m + h\delta m) - \widehat{J}(m) - h\nabla \widehat{J} \cdot \delta m\right| \rightarrow 0 \quad \mathrm{at} \ O(h^2),\]

by Taylor’s theorem. The quantity \(\left|\widehat{J}(m + h\delta m) - \widehat{J}(m)\right|\) is called the first-order
Taylor remainder (because it’s supposed to be first-order), and the quantity \(\left|\widehat{J}(m + h\delta m) - \widehat{J}(m) - h\nabla \widehat{J} \cdot \delta m\right|\)
is called the second-order Taylor remainder.

Suppose someone gives you two functions \(\widehat{J}\) and \(d\widehat{J}\), and claims that \(d\widehat{J}\) is the gradient of
\(\widehat{J}\). Then their claim can be rigorously verified by computing the second-order Taylor remainder for some
choice of \(h\) and \(\delta m\), then repeatedly halving \(h\) and checking that the result decreases
by a factor of 4.



Applying this in dolfin-adjoint

In the case of PDE-constrained optimisation, computing \(\widehat{J}(m)\) involves solving the PDE
for that choice of \(m\) to compute the solution \(u\), and then evaluating the functional \(J\).
The main function in dolfin-adjoint for applying the Taylor remainder convergence test is taylor_test.
To see how this works, let us again consider our example with Burgers’ equation:

from fenics import *
from fenics_adjoint import *

n = 30
mesh = UnitSquareMesh(n, n)
V = VectorFunctionSpace(mesh, "CG", 2)

u = project(Expression(("sin(2*pi*x[0])", "cos(2*pi*x[1])"), degree=2),  V)

u_next = Function(V)
v = TestFunction(V)

nu = Constant(0.0001)

timestep = Constant(0.01)

F = (inner((u_next - u)/timestep, v)
     + inner(grad(u_next)*u_next, v)
     + nu*inner(grad(u_next), grad(v)))*dx

bc = DirichletBC(V, (0.0, 0.0), "on_boundary")

t = 0.0
end = 0.1
while (t <= end):
    solve(F == 0, u_next, bc)
    u.assign(u_next)
    t += float(timestep)

J = assemble(inner(u, u)*dx)
dJdnu = compute_gradient(J, Control(nu))





As you can see, we here find the gradient only with respect to nu.
Now let’s see how to use taylor_test:
Instead of

dJdnu = compute_gradient(J, Control(nu))





we write

h = Constant(0.0001)
Jhat = ReducedFunctional(J, Control(nu))
conv_rate = taylor_test(Jhat, nu, h)





Here, h is the direction of perturbation.
h must be the same type as what we are differentiating with respect to, so in this case since nu is a Constant h must also be a Constant.
It is also a good idea to make sure that h is the same order of magnitude as nu, so that the perturbations are not too large.
Jhat is the functional reduced to a pure function of nu, it is a ReducedFunctional object.
We could also have taken the taylor test on the gradient with respect to the Function
u. In that case h must also be a Function.

h = Function(V)
h.vector()[:] = 0.1
conv_rate = taylor_test(ReducedFunctional(J, control), u, h)





where control is defined as

control = Control(u)





At the desired time in the code.
Here is the full program to check that we compute dJdnu correctly:

from fenics import *
from fenics_adjoint import *

n = 30
mesh = UnitSquareMesh(n, n)
V = VectorFunctionSpace(mesh, "CG", 2)

u = project(Expression(("sin(2*pi*x[0])", "cos(2*pi*x[1])"), degree=2),  V)

u_next = Function(V)
v = TestFunction(V)

nu = Constant(0.0001)

timestep = Constant(0.01)

F = (inner((u_next - u)/timestep, v)
     + inner(grad(u_next)*u_next, v)
     + nu*inner(grad(u_next), grad(v)))*dx

bc = DirichletBC(V, (0.0, 0.0), "on_boundary")

t = 0.0
end = 0.1
while (t <= end):
    solve(F == 0, u_next, bc)
    u.assign(u_next)
    t += float(timestep)

J = assemble(inner(u, u)*dx)
dJdnu = compute_gradient(J, nu)

h = Constant(0.0001)  # the direction of the perturbation
Jhat = ReducedFunctional(J, Control(nu))  # the functional as a pure function of nu
conv_rate = taylor_test(Jhat, nu, h)





[image: more info] Download the adjoint code with verification.

Running this program yields the following output:

$ python tutorial4.py
...
Computed residuals: [8.7896393952526051e-07, 2.2008124772799524e-07, 5.5062930799269294e-08, 1.3771065357994394e-08]
Computed convergence rates: [1.9977677544105585, 1.9988829175084986, 1.9994412277283045]





The first line gives the values computed for the second-order Taylor remainder. As you can see, each value is approximately one quarter of the previous one.
The second line gives the convergence orders of the second-order Taylor remainder: if the gradient has been computed correctly these numbers should be 2.
As we can see they are in fact very close to 2, so we are calculating the gradient correctly.

If you want to see if some object is the gradient you can pass the inner product of that object and the direction h with the named argument dJdm.
For example we may want to check that the convergence orders of the first-order Taylor remainder are 1. This is achieved by passing a proposed gradient 0:

conv_rate = taylor_test(Jhat, Constant(nu), h, dJdm = 0)





Adding this we get the output

$ python tutorial4.py
...
Computed residuals: [0.00025403832691939243, 0.00012723856418173085, 6.367425978393015e-05, 3.185089029200672e-05]
Computed convergence rates: [0.99751017666093167, 0.99875380873361586, 0.99937658413144936]





We see that the residuals are halved and the convergence rates are 1 as expected.

So, what if the Taylor remainders are not correct? Such a situation could occur if the model
manually modifies Function values, or if the model modifies the entries of assembled matrices and
vectors, or if the model is not differentiable, or if there is a bug in dolfin-adjoint. dolfin-adjoint offers ways to pinpoint
precisely where an error might lie; these are discussed in the next section on debugging.
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Foreword

Written by Patrick E. Farrell


Why care about adjoints?

Far too often, maths books launch into their subject without
explaining to the novice reader why he or she should care about it in
the first place. So, before diving into the details, let’s take a few
minutes to motivate why adjoint techniques were invented.

Suppose an aeronautical engineer wishes to design a wing. The wing is
parametrised by a vector \(m\); for example, suppose each entry of
\(m\) is the coefficient of a Bézier curve. For any potential wing
design \(m\), the Euler equations can be solved, and the
lift-to-drag ratio \(J\) of the design computed.  With an adjoint,
the engineer can do far more: the adjoint computes the derivative of
the drag with respect to the design parameters. This can be used to
guide a human designer, or can be passed to an automated optimisation
algorithm to automatically compute an optimal
shape. [1M-Jam88] [1M-GP00].  In the literature, this
concept is referred to as adjoint design optimisation.

Suppose a meteorologist wishes to improve a forecast by constraining
the weather model to match atmospheric observations. The state of the
atmosphere at the initial time is partially known (from weather
stations), but in order to initialise the model an initial condition
for the whole world is required. For any guess of the (unknown)
initial state of the atmosphere \(m\), the Navier-Stokes and
related equations can be solved, and the weighted misfit \(J\)
between the observed values and the simulation results can be
computed. With an adjoint, the meteorologist can systematically
update their guess for the initial state of the atmosphere to match
the observations [1M-LDT86] [1M-TC87]. In the
literature, this concept is referred to as variational data
assimilation, 3D-Var and 4D-Var.

Suppose an oceanographer wishes to understand the impact of bottom
topography on transport through the Drake passage. Bottom topography
(the shape of the sea floor) is quite poorly known; many areas of the
world are sparsely observed, and observations from over a century ago
are still used in some places. The bottom topography is represented as
a scalar field \(m\), the Navier-Stokes and related equations are
solved, and the average net transport through the Drake passage
\(J\) computed. With an adjoint, the oceanographer can see where
the transport is most sensitive to the topography, and so quantify
where the uncertainty matters most [1M-LH07]. In the
literature, this concept is referred to as sensitivity analysis.

Suppose a nuclear engineer working for a government regulator wishes
to examine a proposed new nuclear reactor design. To do this, a
forward model of the Boltzmann transport equations will be used to
simulate the proposed design and verify its safety. However, all
simulations inherently come with discretisation errors, and unless
those errors are quantified, the simulations cannot be relied upon to
make decisions upon which millions of lives and billions of pounds
depend. With an adjoint, the engineer can quantify the impact of
discretisation errors on the criticality rate, and decide to what
extent the simulations may be trusted [1M-BR01]. In the
literature, this concept is referred to as goal-based error
estimation, or goal-based adaptivity.

Suppose a mathematician wishes to understand the stability of some
physical system. The traditional approach to this problem is to
linearise the operator and investigate its eigenvalues, which
determine the long-term behaviour of the system (as \(t
\rightarrow \infty\)). However, systems that are eigenvalue-stable can
exhibit unexpected transient growth of small perturbations, which in
turn can cause the system to become unstable (through nonlinear
effects) [1M-TTRD93]. By computing the singular value
decomposition of the tangent linear model, the transient growth of
the system to such perturbations can be quantified, and the optimally
growing perturbations identified [1M-FI96].  The
computation of the singular value decomposition in turn requires the
adjoint. In the literature, this approach is referred to as
generalised stability theory.

As you can see, adjoints show up in many applications, and in many
computational techniques.  One of the reasons why adjoints have a
reputation for being difficult is because their discussion is
performed in many different areas of science, usually with their own
specialised terminology.  Reading the literature, there are almost as
many ways to approach the topic as there are practitioners!  With this
introduction, I hope to strike to the heart of the matter, and clear
some of the confusion with the minimum of application– or
technique–specific lingo.



A note on the exposition

I have chosen to motivate adjoints via a discussion of
PDE-constrained optimisation for two reasons. The first is that this
approach encapsulates many important applications of adjoints in a
general way, and so the reader will be well-equipped to understand
much adjoint-related mathematics in the literature.  The second is the
elegance of the result: most people are amazed when they first learn
that it is possible to compute the gradient of a functional
\(\widehat{J}(m)\) in a cost independent of the number of
parameters \(\textrm{dim}(m)\)! The topic of adjoints is
intriguing, counterintuitive and beautiful; any exposition should try
to live up to that.

The focus of the exposition will be on getting the core ideas across,
and for this reason the discussion will sometimes neglect
technicalities. For example, I will implicitly assume that all
problems are well-posed, that all necessary derivatives exist and are
sufficiently smooth, etc. Occasionally, to build intuition, I will
refer to objects as matrices and vectors, although the exposition
holds in exactly the same way for their analogues in functional
analysis.  For an advanced in-depth technical treatment of
PDE-constrained optimisation, see the excellent book of Hinze et
al. [1M-HPUU09].



Notation

The notation is mostly inspired by Gunzburger [5M-Gun03].







	Symbol

	Meaning





	\(m\)

	the vector of parameters



	\(u\)

	the solution of the PDE



	\(F(u, m)\)

	the PDE relating \(u\) and \(m\): \(F \equiv 0\)



	\(J(u, m)\)

	a functional of interest



	\(\widehat{J}(m)\)

	the functional considered as a pure function of \(m\): \(\widehat{J}(m) = J(u(m), m)\)






In the next section, we introduce the
PDE-constrained optimisation problem and give a broad overview of how
it may be tackled.
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PDE-constrained optimisation


Problem statement

Let \(m\) be a vector of some parameters. For example, \(m\)
might be the values of an initial condition, or of a source term, or
of a boundary condition.


Feasibility

In optimisation, to say that a point \(m\) in parameter space is
feasible means that it satisfies all of the constraints on the
choice of parameters. To say that the pair \((u, m)\) is
feasible means that \(m\) is feasible, and that \(u\)
satisfies the relationship \(F(u, m) = 0\).


Let \(F(u, m) \equiv 0\) be a (system of) partial differential
equations that describe the physics of the problem of
interest. \(F\) is a vector expression (one entry for each
equation), with all terms in the equation gathered on to the left-hand
side. The idea is that, for any (feasible) choice of \(m \in \mathbb{R}^M\), the
PDE \(F\) can be solved to yield the solution \(u \in \mathbb{R}^U\). In other
words, the solution \(u\) can be thought of as an implicit
function \(u(m)\) of the parameters \(m\), related through
the PDE \(F(u, m) \equiv 0\). We never have an explicit expression
for \(u\) in terms of \(m\), but as we shall see, we can still
discuss its derivative \({\mathrm{d}u}/{\mathrm{d}m}\).

If the problem \(F(u, m)\) is time-dependent, this abstraction
still holds. In this case, think of \(u\) as a vector containing
all time values of all prognostic variables. In the discrete case,
\(u\) is a vector with the value of the solution at the first
timestep, then the value at the second timestep, and so on, for
however many timesteps are required.

Finally, let \(J(u, m)\) be a functional of interest. \(J\)
represents the quantity to be optimised: for example, the quality of a
design is to be maximised, or the misfit between observations and
computations is to be minimised.

A general statement of the PDE-constrained optimisation problem is
then given as follows: find the \(m\) that minimises \(J(u,
m)\), subject to the constraint that \(F(u, m) = 0\). For
simplicity, we suppose that there are no further constraints on the
choice of \(m\); there are well-known techniques for handling such
situations. If \(J\) is to be maximised instead of minimised, just
consider minimising the functional \(-J\).

Throughout this introduction, we shall implicitly consider the case
where the dimension of the parameter space is very large. This means
that we shall seek out algorithms that scale well with the dimension
of the parameter space, and discard those that do not. We shall also
generally assume that solving the PDE is very expensive: therefore,
we will seek out algorithms which attempt to minimise the number of
PDE solutions required. This combination of events – a large
parameter space, and an expensive PDE – is the most interesting,
common, practical and difficult situation, and therefore it is the one
we shall attempt to tackle head-on.


Functional

A functional is a function that acts on some vector space, and
returns a single scalar number.




Solution approaches

There are many ways to approach solving this problem. The approach
that we shall take here is to apply a gradient-based optimisation
algorithm, as these techniques scale to large numbers of parameters
and to complex, nonlinear, time-dependent PDE constraints.

To apply an optimisation algorithm, we will convert the
PDE-constrained optimisation problem into an unconstrained
optimisation problem. Let \(\widehat{J}(m) \equiv J(u(m), m)\) be
the functional considered as a pure function of the parameters
\(m\): that is, to compute \(\widehat{J}(m)\), solve the PDE
\(F(u, m) = 0\) for \(u\), and then evaluate \(J(u,
m)\). The functional \(\widehat{J}\) has the PDE constraint “built
in”: by considering \(\widehat{J}\) instead of \(J\), we
convert the constrained optimisation problem to a simpler,
unconstrained one. The problem is now posed as: find the \(m\)
that minimises \(\widehat{J}(m)\).

Given some software that solves the PDE \(F(u, m) = 0\), we have a
black box for computing the value of the functional
\(\widehat{J}\), given some argument \(m\). If we can only
evaluate the functional, and have no information about its
derivatives, then we are forced to use a gradient-free optimisation
algorithm such as a genetic algorithm. The drawback of such methods is
that they typically scale very poorly with the dimension of the
parameter space: even for a moderate sized parameter space, a
gradient-free algorithm will typically take hundreds or thousands of
functional evaluations before terminating. Since each functional
evaluation involves a costly PDE solve, such an approach quickly
becomes impractical.


Other approaches

No discussion of PDE-constrained optimisation would be complete
without mentioning the “oneshot” approach. Instead of starting with
some initial guess \(m\) and applying an optimisation algorithm,
the oneshot approach derives auxiliary equations that provide
necessary and sufficient conditions for finding an optimum. These
coupled equations are then solved, almost always with a matrix-free
approach. The necessary and sufficient conditions are referred to as
the KKT conditions, and the system referred to as the KKT system,
after Karush, Kuhn and Tucker, the mathematicians who derived the
optimality system [2M-Kar39] [2M-KT51].
Interestingly, one of the equations in the KKT system is the adjoint
equation, which will be derived in a different way in the next
section.


By contrast, optimisation algorithms that can exploit information
about the derivatives of \(\widehat{J}\) can typically converge
onto a local minimum with one or two orders of magnitude fewer
iterations, as the gradient provides information about where to step
next in parameter space. Therefore, if evaluating the PDE solution is
expensive (and it usually is), then computing derivative information
of \(\widehat{J}\) becomes very important for the practical
solution of such PDE-constrained optimisation problems.

So, how should the gradient
\({\mathrm{d}\widehat{J}}/{\mathrm{d}m}\) be computed? There are
three main approaches, each with their own advantages and
disadvantages. Discussing these strategies is the topic of the
next section.
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Differentiating functionals


Finite differencing

The definition of the derivative
\(\mathrm{d}\widehat{J}/\mathrm{d}m\) is


\[\frac{\mathrm{d}\widehat{J}}{\mathrm{d}m_i} = \lim_{h \rightarrow 0} \ \frac{\widehat{J}(m + he_i) - \widehat{J}(m)}{h}\]

where \(e_i\) is the vector with 0 in all entries except for 1 in
the \(i^{\mathrm{th}}\) entry.  Each component of the gradient
vector \(\mathrm{d}\widehat{J}/\mathrm{d}m\) is the derivative of
the functional \(\widehat{J}\) with respect to the corresponding
component of \(m\). A simple idea for approximating the derivative
is to compute each component of the gradient as


\[\frac{\mathrm{d}\widehat{J}}{\mathrm{d}m_i} \approx \frac{\widehat{J}(m + he_i) - \widehat{J}(m)}{h}\]

for some small choice of \(h\). The advantage of this approach is
that it is very straightforward: it still only requires a black-box
evaluator for \(\widehat{J}\), and the approximation of the
gradients can be done entirely within the optimisation algorithm.


When finite differencing is useful

In the PDE-constrained optimisation case, finite differencing isn’t
very useful for computing the gradient of the functional. However,
it is very useful for rigorously verifying gradients computed
with another approach. For more details, see the section of the
dolfin-adjoint documentation on verifying functional gradients.


However, this approach suffers from several serious drawbacks. One
problem is that it is not obvious how to choose an appropriate value
for \(h\): choose \(h\) too large, and the finite difference
will not approximate the limit value; choose \(h\) too small, and
numerical precision will destroy the accuracy of the approximation. A
more serious problem, however, is that this approximation requires one
functional evaluation for each degree of freedom in the parameter
space.  When each functional evaluation requires an expensive PDE
solve, this approach quickly becomes impractical, and a more
intelligent algorithm is required.



The tangent linear approach

Recall that \(\widehat{J}(m)\) is the functional considered as a
pure function of \(m\):


\[\widehat{J}(m) = J(u(m), m).\]

Let us apply the chain rule to \(\widehat{J}(m)\):


\[\underset{\scriptsize{1 \times M}}{\frac{\mathrm{d}\widehat{J}}{\mathrm{d}m}} =
\underset{\scriptsize{1 \times U}}{\frac{\partial J}{\partial u}}
\underset{\scriptsize{U \times M}}{\frac{\mathrm{d}u}{\mathrm{d}m}} +
\underset{\scriptsize{1 \times M}}{\frac{\partial J}{\partial m}}.\]

Let us inspect each term of this relationship, and build up some
intuition about each.  \({\partial J}/{\partial m}\) and
\({\partial J}/{\partial u}\) are typically very straightforward
to compute: \(J\) is usually a simple closed-form expression in
terms of \(u\) and \(m\), and so their differentiation by hand
is generally trivial. Both of these quantities are vectors, with
dimensions of the parameter space and solution space respectively. By
contrast, the solution Jacobian \({\mathrm{d}u}/{\mathrm{d}m}\) is
rather difficult to compute.  This object is a massive dense matrix,
of dimensions (solution space \(\times\) parameter space), and as
such it is unlikely to fit in memory. However, let us temporarily
suppose that the number of parameters is small, and that we would like
to compute \({\mathrm{d}\widehat{J}}/{\mathrm{d}m}\) using the
relationship above.

With the PDE \(F(u, m) = 0\), we have an relationship for
\(u\) as an implicit function of \(m\).  If we take the total
derivative of this equation with respect to \(m\), we will have a
relationship for the solution Jacobian
\({\mathrm{d}u}/{\mathrm{d}m}\):


\[\begin{split}& \frac{\mathrm{d}}{\mathrm{d}m} F(u, m) = \frac{\mathrm{d}}{\mathrm{d}m} 0 \\
\implies & \frac{\partial F(u, m)}{\partial u} \frac{\mathrm{d}u}{\mathrm{d}m} + \frac{\partial F(u, m)}{\partial m} = 0 \\
\implies &
\underset{\scriptsize{U \times U}}{\frac{\partial F(u, m)}{\partial u}}
\underset{\scriptsize{U \times M}}{\frac{\mathrm{d}u}{\mathrm{d}m}} =
\underset{\scriptsize{U \times M}}{-\frac{\partial F(u, m)}{\partial m}}.\end{split}\]


The tangent linear system

The tangent linear system is the same idea as the forward mode of
algorithmic or automatic differentiation.


This last relationship is the tangent linear equation (or tangent
linear system) associated with the PDE \(F(u, m) = 0\). Let us
carefully consider each term in the tangent linear system, and build
up some intuition about each.

\({\mathrm{d}u}/{\mathrm{d}m}\) is the solution Jacobian again,
with which we can compute the functional gradient
\({\mathrm{d}\widehat{J}}/{\mathrm{d}m}\). It is the prognostic
variable of this equation, the unknown quantity in the tangent linear
system.

Now consider \({\partial F(u, m)}/{\partial u}\). Since \(F\)
is a vector expression, its derivative with respect to \(u\)
\(m\) is an operator (a matrix); this operator acts on the
solution Jacobian, and therefore must be inverted or
solved. \(F(u, m)\) may have been nonlinear in \(u\), but
\({\partial F(u, m)}/{\partial u}\) is always linear. In other
words, \({\partial F(u, m)}/{\partial u}\) is the linearisation
of the equation operator, linearised about a particular solution
\(u\). If \(F(u, m)\) happened to be linear in the first
place, and so \(F(u, m) \equiv A(m)u - b(m)\) for some operator
\(A(m)\), then \({\partial F(u, m)}/{\partial u}\) is just the
operator \(A(m)\) back again.

Finally, consider the term \({\partial F(u, m)}/{\partial
m}\). Like \({\mathrm{d}u}/{\mathrm{d}m}\), this is a matrix of
dimension (solution space \(\times\) parameter space). This term
acts as the source term for the tangent linear system; each column of
\({\partial F(u, m)}/{\partial m}\) provides the source term for
the derivative of \(u\) with respect to one scalar entry in the
parameter vector.

So, when is solving the tangent linear system a sensible approach?
To answer this question, notice that we had to specify some parameter
\(m\) to construct the tangent linear system, but that the
functional \(J\) does not appear at all.  In other words, for a
given parameter (input), the tangent linear solution can be used to
easily compute the gradient of any functional. This means that
solving the tangent linear system makes sense when there are a small
number of parameters (inputs), and a large number of functionals of
interest (outputs). However, this is generally not the case in
PDE-constrained optimisation. Is there a better way?



The adjoint approach

Let us rephrase the tangent linear approach to computing the
gradient. We start by fixing our choice of parameter \(m\), and
then solve for the solution Jacobian
\({\mathrm{d}u}/{\mathrm{d}m}\) associated with that choice of
\(m\). With this quantity in hand, we take its inner product with
a source term \({\partial J}/{\partial u}\) particular to the
functional \(J\), and can then compute the gradient
\({\mathrm{d}\widehat{J}}/{\mathrm{d}m}\).

Notice that we first fixed the parameter \(m\), (the “denominator”
of the gradient \({\mathrm{d}\widehat{J}}/{\mathrm{d}m}\)) and
then chose which functional we wished to compute the gradient of
(the “numerator” of the gradient). Is there a way where we could do
the opposite: first fix the functional \(J\), and then choose
which parameter to take the gradient with respect to? The answer is
yes, and that approach is referred to as the adjoint approach.

Suppose the tangent linear system is invertible. Then we can rewrite
the solution Jacobian as


\[\frac{\mathrm{d}u}{\mathrm{d}m} = - \left(\frac{\partial F(u, m)}{\partial u}\right)^{-1}
\frac{\partial F(u, m)}{\partial m}.\]

We usually could not compute this expression (computing the inverse of
the operator \({\partial F(u, m)}/{\partial u}\) is prohibitive),
but we can still use it and reason about it. Let us substitute this
expression for the solution Jacobian into the expression for the
gradient of \(\widehat{J}\):


\[\begin{split}& \frac{\mathrm{d}\widehat{J}}{\mathrm{d}m} = \frac{\partial J}{\partial u} \frac{\mathrm{d}u}{\mathrm{d}m} + \frac{\partial J}{\partial m}.\\
\implies & \frac{\mathrm{d}\widehat{J}}{\mathrm{d}m} = - \frac{\partial J}{\partial u} \left(\frac{\partial F(u, m)}{\partial u}\right)^{-1} \frac{\partial F(u, m)}{\partial m} + \frac{\partial J}{\partial m}.\end{split}\]


The adjoint of a matrix

The notation \(A^*\) means to take the transpose of \(A\),
\(A^T\), and take the complex conjugate of each entry. If the
matrix \(A\) is composed entirely of real numbers, then the
adjoint is just the transpose. Other words for the adjoint are the
Hermitian and the conjugate transpose.


Now let’s take the adjoint (Hermitian transpose) of the above equation:


\[\underset{\scriptsize{M \times 1}}{\frac{\mathrm{d}\widehat{J}}{\mathrm{d}m}^*} =
  -\underset{\scriptsize{M \times U}}{\frac{\partial F}{\partial m}^*}
  \underset{\scriptsize{U \times U}}{\frac{\partial F}{\partial u}^{-*}}
  \underset{\scriptsize{U \times 1}}{\frac{\partial J}{\partial u}^{*}}
  +
  \underset{\scriptsize{M \times 1}}{\frac{\partial J}{\partial m}^*}\]

Let us gather the solution of the inverse Jacobian acting on a vector, and define it
to be a new variable:


\[\begin{split}& \lambda = \left(\frac{\partial F(u, m)}{\partial u}\right)^{-*} \frac{\partial J}{\partial u}^* \\
\implies & \left(\frac{\partial F(u, m)}{\partial u}\right)^{*} \lambda = \frac{\partial J}{\partial u}^*.\end{split}\]


The adjoint system

The adjoint system is the same idea as the reverse mode of
algorithmic or automatic differentiation.

Another word for “adjoint” used in the literature is “dual”: people
refer to the dual system, the dual solution, etc.


This relationship is the adjoint equation (or adjoint system)
associated with the PDE \(F(u, m) = 0\). Again, let us carefully
consider each term in the adjoint equation and build up some intuition
about each.

\(\lambda\) is the adjoint variable associated with
\(u\). Each component of the solution \(u\) will have a
corresponding adjoint variable. For example, if \(F\) is the
Navier-Stokes equations, and \(u\) is the tuple of velocity and
pressure, then \(\lambda\) is the tuple of adjoint velocity and
adjoint pressure. Similarly, if the problem is time-dependent, the
adjoint is also time-dependent, with each variable through time having
a corresponding adjoint value.

\(\left({\partial F(u, m)}/{\partial u}\right)^{*}\) is the
adjoint of the tangent linear operator. Commonly, this is referred
as the “adjoint operator”. By taking the transpose, we reverse the
flow of information in the equation system. For example, if a tracer
is advected downstream (and so information about upstream conditions
is advected with it), the adjoint PDE advects information in the
reverse sense, i.e. upstream. This extends to the temporal propagation
of information: if \(F(u, m)\) is a time-dependent PDE (and so
propagates information from earlier times to later times), the adjoint
PDE runs backwards in time (propagates information from later times
to earlier times). This property will be examined in more detail in
the next section.

\({\partial J}/{\partial u}\) is the source term for the adjoint
equation. It is this source term that makes an adjoint solution
specific to a particular functional. Just as one cannot speak of the
tangent linear solution without referring to a particular choice of
parameter, one cannot speak of the adjoint solution without referring
to a specific choice of functional.

As the tangent linear operator is always linear, the adjoint is linear
in \(u\) also, and so the adjoint equation is always linear in
\(\lambda\). This property will also be examined in more detail in
the next section.

So, to compute the functional gradient
\({\mathrm{d}\widehat{J}}/{\mathrm{d}m}\), we first solve the
adjoint equation for \(\lambda\) (fixing the “nominator” of the
gradient, as the adjoint is specific to the functional), and then take
its inner product with respect to \(-{\partial F(u, m)}/{\partial
m}\) to compute the gradient with respect to a particular parameter
\(m\) (fixing the “denominator” of the gradient). This is
precisely the dual approach to that of computing
\({\mathrm{d}\widehat{J}}/{\mathrm{d}m}\) using the tangent linear
approach, and has precisely the dual scaling: for a given functional
(output), the adjoint solution can be used to easily compute the
gradient with respect to any parameter. Therefore, solving the
adjoint system is extremely efficient when there are a small number
of functionals (outputs), and a large number of parameters
(inputs). This is precisely the case we are considering in
PDE-constrained optimisation: there is one functional (output) of
interest, but many parameters.

So, with some knowledge of the chain rule and some transposition,
we have devised an algorithm for computing the gradient
\({\mathrm{d}\widehat{J}}/{\mathrm{d}m}\) that is extremely
efficient for our case where we have many parameters and only one
functional.



Summary

A sketch of the solution approach for the PDE-constrained optimisation
problem is therefore:


	Start with some initial guess for the parameters \(m\).


	Compute the functional \(\widehat{J}(m)\) (using the forward model) and its gradient (using the adjoint model).


	Pass these values to an optimisation algorithm.
This algorithm returns a new point in parameter space with a better functional value.


	If the gradient is zero, or if the maximum number of iterations has been reached, terminate. Otherwise, go to step 2.




Of course, PDE-constrained optimisation is a much richer field than
the simple sketch above would suggest.  Much work is focussed on
exploiting particular properties of the equations or the functional,
ensuring the gradient is represented with the correct Riesz representer,
or imposing additional constraints on the parameter space, or
exploiting advanced forward modelling concepts such as error
estimation, goal-based adaptivity and reduced-order
modelling. Nevertheless, although complications proliferate, the above
algorithm captures the key idea of many approaches used for solving
problems of enormous importance.

With the adjoint and tangent linear equations now introduced, let us
examine them more thoroughly, in the next section.
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Properties of the adjoint equations

The adjoint equations have a reputation for being
counterintuitive. When told the adjoint equations run backwards in
time, this can strike the novice as bizarre. Therefore, it is worth
taking some time to explore these properties, until it is obvious
that the adjoint system should run backwards in time, and (more
generally) reverse the propagation of information. In fact, these
supposedly confusing properties are induced by nothing more exotic
than simple transposition.


The adjoint reverses the propagation of information


A simple advection example

Suppose we are are solving a one-dimensional advection-type equation
on a mesh with three nodes, at \(x_0=0\), \(x_1=0.5\), and
\(x_2=1\).  The velocity goes from left to right, and so we impose
an inflow boundary condition at the left-most node \(x_0\). A
simple sketch of the linear system that might describe this
configuration could look as follows:


\[\begin{split}\begin{pmatrix} 1 & 0 & 0 \\
                a & b & 0 \\
                c & d & e \end{pmatrix}
\begin{pmatrix} u_0 \\ u_1 \\ u_2 \end{pmatrix}
=
\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},\end{split}\]

where \(a, b, c, d\) and \(e\) are some coefficients of the
matrix arising from a discretisation of the equation. The equation for
\(u_1\) does not depend on \(u_2\), as information is flowing
from left to right.  The structure of the matrix dictates the
propagation of information of the system: first \(u_0\) is set to
the boundary condition value, then \(u_1\) may be computed, and
then finally \(u_2\). The lower-triangular nature of the matrix
reflects the rightward propagation of information.

Notice that \(u_0\) is prescribed: that is, the value of
\(u_0\) does not depend on the values at any other nodes; all
off-diagonal entries on the row for \(u_0\) are zero. Notice
further that the value \(u_2\) is diagnostic: no other nodes
depend on its value; all off-diagonal entries on its column are zero.

Now suppose that we take the adjoint of this system with respect to
some functional \(J(u)\). The operator is linear (no entry in the
matrix depends on \(u\)), and so the adjoint of this system is
just its transpose:


\[\begin{split}\begin{pmatrix} 1 & a & c \\
                0 & b & d \\
                0 & 0 & e \end{pmatrix}
\begin{pmatrix} \lambda_0 \\ \lambda_1 \\ \lambda_2 \end{pmatrix}
=
\begin{pmatrix} {\partial J}/{\partial u_0} \\ {\partial J}/{\partial u_1} \\ {\partial J}/{\partial u_2} \end{pmatrix},\end{split}\]


The adjoint of the advection equation

If the forward equation is \(u \cdot \nabla T\), where \(u\)
is the advecting velocity and \(T\) is the advected tracer, then
its corresponding adjoint term is \(-u \cdot \nabla \lambda\).
The adjoint advection equation is itself an advection equation, with
the reverse of the forward velocity.


where \(\lambda\) is the adjoint variable corresponding to
\(u\). Observe that transposing the forward system yields an
upper-triangular adjoint system: the adjoint propagates information
from right to left, in the opposite sense to the propagation of the
forward system. To solve this system, one would first solve for
\(\lambda_2\), then compute \(\lambda_1\), and finally
\(\lambda_0\).

Further notice that \(\lambda_2\) is now prescribed: it can be
computed directly from the data, with no dependencies on the values of
other adjoint variables; all of the off-diagonal entries in its row
are zero. \(\lambda_0\) is now diagnostic: no other variables
depend on its value; all off-diagonal entries in its column are zero.


Prescribed and diagnostic variables

This is a general pattern. Variables that are prescribed in the
forward model are diagnostic in the adjoint; variables that are
diagnostic in the forward model are prescribed in the adjoint.




A time-dependent example

Now consider a time-dependent system. For convenience, we assume the
system is linear, but the result holds true in exactly the same way
for nonlinear systems. We start with an initial condition \(f_0\)
for \(u_0\) (where the subscript denotes the timestep, rather than
the node). We then use this information to compute the value at the
next timestep, \(u_1\). This information is then used to compute
\(u_2\), and so on. This temporal structure can be represented as
a block-structured matrix:


\[\begin{split}\begin{pmatrix} I & 0 & 0 \\
                A & B & 0 \\
                C & D & E \end{pmatrix}
\begin{pmatrix} u_0 \\ u_1 \\ u_2 \end{pmatrix}
=
\begin{pmatrix} f_0 \\ f_1 \\ f_2 \end{pmatrix},\end{split}\]

where \(I\) is the identity operator, \(A, B, C, D\) and
\(E\) are some operators arising from the discretisation of the
time-dependent system, \(f_0\) is the initial condition for
\(u_0\), and \(f_n\) is the source term for the equation for
\(u_n\).

Again, the temporal propagation of information forward in time is
reflected in the lower-triangular structure of the matrix. This
reflects the fact that it is possible to timestep the system, and
solve for parts of the solution \(u\) at a time. If the discrete
operator were not lower-triangular, all timesteps of the solution
\(u\) would be coupled, and would have to be solved for together.

Notice again that the value at the initial time \(u_0\) is
prescribed, and the value at the final time \(u_2\) is diagnostic.

Now let us take the adjoint of this system. Since the operator has
been assumed to be linear, the adjoint of this system is given by the
block-structured matrix


\[\begin{split}\begin{pmatrix} I & A^* & C^* \\
                0 & B^* & D^* \\
                0 & 0   & E^* \end{pmatrix}
\begin{pmatrix} \lambda_0 \\ \lambda_1 \\ \lambda_2 \end{pmatrix}
=
\begin{pmatrix} {\partial J}/{\partial u_0} \\ {\partial J}/{\partial u_1} \\ {\partial J}/{\partial u_2} \end{pmatrix},\end{split}\]

where \(\lambda\) is the adjoint variable corresponding to
\(u\). Observe that the adjoint system is now upper-triangular:
the adjoint propagates information from later times to earlier times,
in the opposite sense to the propagation of the forward system. To
solve this system, one would first solve for \(\lambda_2\), then
compute \(\lambda_1\), and finally \(\lambda_0\).

Notice once more that the prescribed-diagnostic relationship
applies. In the forward model, the initial condition is prescribed,
and the solution at the final time is diagnostic. In the adjoint
model, the solution at the final time is prescribed (a so-called
terminal condition, rather than an initial condition), and the
solution at the beginning of time is diagnostic. This is why when the
adjoint of a continuous system is derived, the formulation always
includes the specification of a terminal condition on the adjoint
system.




The adjoint equation is linear

As noted in the previous section, the operator of the tangent linear
system is the linearisation of the operator about the solution
\(u\); therefore, the adjoint system is always linear in
\(\lambda\).


Unconverged nonlinear iterations

Note that the nonlinear iteration has to converge for the
linearisation about the solution at that timestep to be valid. If
the model does not drive the nonlinear problem to convergence
(perhaps it only does a fixed number of Picard iterations, say),
then it is not consistent to see the nonlinear solve as one
equation, and to trade it for a linear solve in the adjoint. In
other words, if the nonlinear solve does not converge, then each
iteration of the unconverged nonlinear solve induces a linear
solve in the adjoint system, and so the adjoint will take
approximately the same runtime as the forward model.

Converging your nonlinear problem is not only more accurate, it
makes the adjoint relatively much more efficient!


This has two major effects. The first is a beneficial effect on the
computation time of the adjoint run: while the forward model may be
nonlinear, the adjoint is always linear, and so it can be much
cheaper to solve than the forward model.  For example, if the forward
model employs a Newton solver for the nonlinear problem that uses on
average \(5\) linear solves to converge to machine precision, then
a rough estimate for the adjoint computation is that it will take
\(1/5\) the runtime of the forward model.

The second major effect is on the storage requirements of the adjoint
run. Unfortunately, this effect is not beneficial.  The adjoint
operator is a linearisation of the nonlinear operator about the
solution \(u\): therefore, if the forward model is nonlinear, the
forward solution must be available to assemble the adjoint system. If
the forward model is steady, this is not a significant difficulty:
however, if the forward model is time-dependent, the entire solution
trajectory through time must be available.

The obvious approach to making the entire solution trajectory
available is to store the value of every variable solved for. This
approach is the simplest, and it is the most efficient option if
enough storage is available on the machine to store the entire
solution at once. However, for long simulations with many degrees of
freedom, it is usually impractical to store the entire solution
trajectory, and therefore some alternative approach must be
implemented.


Summary

Now that the adjoint and tangent linear equations have been
introduced, and some of their properties discussed, let us see in more
detail the applications of these concepts. This is discussed in
the next section.






            

          

      

      

    

  

  
    
    

    Applications of adjoints
    

    
 
  

    
      
          
            
  
Applications of adjoints

As mentioned in the introduction, adjoints (and tangent linear models)
have many applications in many different areas of computational
science.  In this section, we aim to give a very brief overview of
each application in which adjoints are used, with the intent of
getting the basic idea across.

For each application, a very brief literature review is provided,
giving pointers to some key references which may be used to explore
the field. I make no claim that these reviews are comprehensive;
naturally, I am personally more familiar with some areas than
others. Contributions to this section are very welcome.


PDE-constrained optimisation

As discussed in the previous sections, adjoints form the core
technique for efficiently computing the gradient
\({\mathrm{d}J(u, m)}/{\mathrm{d}m}\) of a functional \(J\) to
be minimised.  This is usually essential for solving such optimisation
problems in practice: gradient-free optimisation algorithms typically
take orders of magnitude more iterations to converge; since each
iteration involves a PDE solve, minimising the number of iterations
taken is crucial.

For an engineering introduction to PDE-constrained optimisation,
Gunzburger’s book is excellent [5M-Gun03]; for an in-depth
mathematical analysis, see the rigorous treatment of Hinze et
al. [1M-HPUU09]. PDE-constrained optimisation is also referred
to in the literature as optimal control: the book of Lions
[5M-Lio71] was a fundamental early contribution.



Sensitivity analysis

Occasionally, the gradient of a functional \(J\) with respect to
some parameter \(m\) is not merely required as an input to an
optimisation algorithm, but rather is of scientific interest in its
own right. Adjoint computations can tease apart hidden influences and
teleconnections; such computations can also inform scientists
regarding which variables matter the least, which is often important
for deriving approximate models; parameters with little impact on the
simulation can be ignored. This process is also often undertaken in
advance of solving an optimisation problem: by discarding parameters
which do not significantly influence the functional, the dimension of
the parameter space may be systematically reduced.

A fundamental early contribution was the work of Cacuci
[5M-Cac81]. Much excellent work in applying sensitivity
analysis to questions of enormous scientific importance has been done
in the areas of oceanography and meteorology: partly because ocean and
atmospheric models often have adjoint versions implemented for the
purposes of data assimilation, partly because adjoint analysis is
often the only practical way of identifying such connections, and
partly because practitioners in these fields are aware of adjoints and
their potential. Of particular note is the work done by Heimbach and
co-workers using the adjoint of the MITgcm ocean model [http://mitgcm.org] [1M-LH07] [5M-HML+10]
[5M-HL12].



Data assimilation

A forward model requires data on which to operate. For example, to
start a weather forecast, knowledge of the entire state of the
atmosphere at some point in time is required as an initial condition
from which to begin the simulation: start from the wrong initial
condition, and you will get the wrong weather.

The problem is that, in practice, the initial condition is
unknown. Instead, observations of the state of the atmosphere are
available, some available at the initial time, and some taken at later
times. The goal of data assimilation is to systematically combine
observations and computations, usually with the intention of acquiring
the best possible estimate of the unknown initial condition, so that a
forecast may be run. Indeed, most of the dramatic increase in forecast
skill over the past decade has been attributable to improvements in
data assimilation algorithms (Prof. Dale Barker, UK Met Office,
personal communication). This problem is routinely tackled in every
meteorological centre in the world, multiple times a day: your weather
forecast relies entirely upon it.

There are two major approaches to data assimilation. In a sequential
algorithm, the forward system is timestepped until an observation is
available, at which point the model is instantaneously “updated” to
incorporate the information contained in the observation. The most
popular approach to computing the amplitude of the update is the
Kalman filter algorithm [5M-Kal60]. The model is then
continued from this updated state until all of the observations are
used. A significant drawback of this approach is that an observation
only influences the state at times later than the observation time: in
other words, its temporal influence only propagates forward, not
backwards in time. This is a major disadvantage in the case where the
initial condition is the main quantity of interest, and most of the
observations are made towards the end of the time window, as is the
case in studies of mantle convection [5M-BHT03].

The other major approach is referred to as variational data
assimilation, which is a special case of PDE-constrained
optimisation. In this approach, a functional \(J\) is chosen to
represent the misfit between the observations and the computations,
weighted by the uncertainties in each. The initial condition is
treated as a control parameter \(m\), and chosen to minimise the
misfit \(J\).  The data assimilation community tends to place
significant emphasis on modelling the uncertainties in both the
computations and observations, as this is key to extracting the
maximal amount of information out of both.


The ECCO2 project

One of the most impressive computational experiments ever attempted
is the ECCO2 project [http://ecco2.org], which uses the adjoint
of the MITgcm ocean model [http://mitgcm.org]
[5M-HHG05] to assimilate every observation made of the
world’s oceans over the past twenty years [5M-Wun96]. With
this assimilation, they have produced the most accurate estimation
of the state of the world’s oceans ever devised. For a stunningly
beautiful visualisation of this experiment, see
http://vimeo.com/39333560.


Fundamental early works in field of variational data assimilation were
undertaken by Le Dimet and Talagrand [1M-LDT86] and Talagrand
and Courtier [1M-TC87]. For an excellent introduction, see
the book of Kalnay [5M-Kal02]. Information on the data
assimilation schemes used in practice by the European Centre for
Medium-range Weather Forecasting [http://www.ecmwf.int/research/ifsdocs/ASSIMILATION/Chap1_Overview2.html]
and the UK Met Office [http://www.metoffice.gov.uk/research/weather/data-assimilation-and-ensembles]
is available online.



Inverse problems

Data assimilation can be seen as a particular kind of inverse problem,
where the focus is on obtaining the best estimate for the system state
at some point in the past. More general inverse problems, where we
seek to gain information about unobservable system parameters from
observable system outputs, are ubiquitous in science and
engineering. Again, the same idea of minimising some functional that
measures the misfit between the observations and computed model
outputs plays a role. The field also has a heavy emphasis on
regularisation of inverse problems (which are generally ill-posed) and
on statistical estimates of uncertainty in the obtained results. For
an introductory textbook, see the book by Tarantola
[5M-Tar05]; for a review of the current state of the art in
computational practice, see the compendium of Biegler et
al. [5M-BMB+11].



Generalised stability theory

The stability of solutions of physical systems is obviously of key
importance in many fields. The traditional approach to stability
theory is to linearise the operator about some state, and investigate
its eigenvalues: if the real component of every eigenvalue is
negative, the state is stable, and the associated eigenmode will
vanish in the limit as \(t \rightarrow \infty\); while if any
eigenvalue has a positive real part, the state is unstable, and the
associated eigenmode will grow in amplitude. While this traditional
approach works well in many cases, there are many important cases
where this analysis predicts stability where in fact the physical
system is unstable; in particular, this analysis fails when the
operator is nonnormal [1M-TTRD93] [5M-Sch07].


Nonnormal matrices

A matrix is normal if its eigenvectors form an orthonormal basis. A
matrix is nonnormal if the eigenvectors have nonzero projection onto
each other. See the Wikipedia entry [http://en.wikipedia.org/wiki/Normal_matrix] for more details.


In the nonnormal case, the usual stability theory fails. The two main
theoretical responses to this development have been the concepts of
pseudospectra (by Trefethen et al. [5M-TE05]) and
generalised stability theory (by Farrell et
al. [1M-FI96]). Instead of focusing on the eigenvalues of
the operator linearised about some steady state, generalised stability
theory analyses the generalised eigenvalues associated with the
propagator of the system, which maps perturbations in initial
conditions to perturbations in the final state.  Essentially, the
propagator is the inverse of the tangent linear operator. By examining
these values, such an analysis can describe and predict the
perturbations that will grow maximally over finite time windows
[5M-Lor65]. In order to compute these generalised eigenvalues
of the system propagator, both the tangent linear and adjoint
operators must be repeatedly solved [5M-TB97].

As generalised stability theory yields information about the
perturbation directions which grow the most over the period of
interest, these vectors are often used to initialise ensemble members
to gain the optimal amount of information possible about the variance
of the ensemble [5M-IF05] [5M-Bui06].  The growth
rates associated with these optimal perturbations have important
implications for the timescales of predictability of the physical
system. For examples of this analysis, see the work of Zanna et
al. [5M-ZHMT12].

We also note in passing that it is possible to use these singular
vectors to guide the targeting of observations to maximise the
effectiveness of a data assimilation strategy. For more details, see
[5M-PGBB98].

For more details, see the appendix on generalised stability
theory.



Error estimation

Another major application of adjoints is goal-based error estimation,
and the related computational technique of goal-based adaptivity. For
the purposes of this section, let \(u\) and \(\lambda\) denote
the exact forward and adjoint solutions associated with the PDE
\(F(u) = 0\), and let \(u_h\) and \(\lambda_h\) be some
approximations to them computed using a Galerkin finite element
discretisation. The fundamental question of goal-based error
estimation is: what impact does the discretisation error \(u -
u_h\) have on the error in the goal functional \(J(u) - J(u_h)\)?
One can construct cases where \(u - u_h\) is large, but
\(J(u) - J(u_h)\) is zero; similarly, one can construct cases
where \(u - u_h\) is small, but \(J(u) - J(u_h)\) is large.

The fundamental theorem of error estimation, due to Rannacher and
co-workers [1M-BR01] [5M-BR03], states that


Residuals

To compute the forward residual \(\rho_u\), take the approximate
forward solution \(u_h\) and plug it in to the forward equation
\(\rho_u \equiv F(u_h)\). If \(u_h\) were the exact
solution, \(F(u_h)\) would be zero, but since the solution is
only approximate \(\rho_u \equiv F(u_h)\) will be nonzero.

To compute the adjoint residual, perform the analogous computation:
take the approximate adjoint solution \(\lambda_h\) and plug it
in to the adjoint equation, and take all terms in the adjoint
equation to the left-hand side.



\[J(u) - J(u_h) = \frac{1}{2} \left\langle \lambda - \lambda_h, \rho_u \right\rangle + \frac{1}{2} \left\langle u - u_h, \rho_{\lambda} \right\rangle + R_h^{(3)},\]

where \(u - u_h\) is the discretisation error in the forward
solution, \(\lambda - \lambda_h\) is the discretisation error in
the adjoint solution, \(\rho_u\) is the forward residual,
\(\rho_{\lambda}\) is the adjoint residual, and \(R_h^{(3)}\)
is a remainder term which is cubic in the discretisation errors
\(u - u_h\) and \(\lambda - \lambda_h\).

In practice, \(u - u_h\) is estimated by approximating \(u\)
with an extrapolation of \(u_h\) into a higher-order function
space (and similarly for \(\lambda\)), and the expression for
\(J(u) - J(u_h)\) is broken up into a sum of element-level error
indicators that are used to decide which elements should be refined
in an adaptive algorithm.  For a discussion of how to implement
goal-based adaptivity in a general way in the FEniCS framework, see
the work of Rognes and Logg [5M-RL10].


The structure of the error estimator

Notice that the error estimator has a very particular structure: it
is the average of the inner product of the adjoint solution error
with the forward residual, and the forward solution error with the
adjoint residual. As many early results in the field only employed
the first term in the error estimator, the approach became known as
the “dual-weighted residual” approach (the term “dual” is commonly
used to refer to the adjoint in this branch of the literature).

If the averaging is not performed, and only the first term of the
error estimator is included, the remainder term is quadratic in
the forward and adjoint discretisation errors, not cubic.


The works of Rannacher and co-workers give many examples where a
computation that employs goal-based adaptivity is dramatically faster
at computing the functional to within a certain tolerance than the
corresponding fixed-mesh or heuristically-driven adaptivity. This
theorem raises the possibility of reliable automated computation:
not only can the discretisation of the differential equation be
automated with the FEniCS system, it can be automated to reliably and
efficiently compute desired quantities to within a specified
accuracy. The prospect of such a system would dramatically change the
social utility of computational science.

References



	5M-BR03

	W. Bangerth and R. Rannacher. Adaptive finite element methods for differential equations. ETH Zürich Lectures in Mathematics. Birkhäuser, 2003. ISBN 3764370092.



	5M-BMB+11

	L. Biegler, Y. Marzouk, G. Biros, O. Ghattas, M. Heinkenschloss, D. Keyes, B. Mallick, L. Tenorio, B. van Bloemen Waanders, and K. Willcox, editors. Large-Scale Inverse Problems and Quantification of Uncertainty. Wiley Series in Computational Statistics. Wiley, 2011. ISBN 978-0-470-69743-6.



	5M-Bui06

	R. Buizza. The ECMWF ensemble prediction system. In T. Palmer, editor, Predictability of Weather and Climate, chapter 17, pages 459–488. Cambridge University Press, 2006. doi:10.1017/CBO9780511617652.018 [https://doi.org/10.1017/CBO9780511617652.018].



	5M-BHT03

	H. P. Bunge, C. R. Hagelberg, and B. J. Travis. Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophysical Journal International, 152(2):280–301, 2003. doi:10.1046/j.1365-246X.2003.01823.x [https://doi.org/10.1046/j.1365-246X.2003.01823.x].



	5M-Cac81

	D. G. Cacuci. Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach. Journal of Mathematical Physics, 22(12):2794–2802, 1981. doi:10.1063/1.525186 [https://doi.org/10.1063/1.525186].



	5M-Gun03

	M. D. Gunzburger. Perspectives in Flow Control and Optimization. Advances in Design and Control. SIAM, 2003. ISBN 089871527X.



	5M-HHG05

	P. Heimbach, C. Hill, and R. Giering. An efficient exact adjoint of the parallel MIT General Circulation Model, generated via automatic differentiation. Future Generation Computer Systems, 21(8):1356–1371, 2005. doi:10.1016/j.future.2004.11.010 [https://doi.org/10.1016/j.future.2004.11.010].



	5M-HL12

	P. Heimbach and M. Losch. Adjoint sensitivities of sub-ice shelf melt rates to ocean circulation under Pine Island Ice Shelf, West Antarctica. Annals of Glaciology, 53(60):59–69, 2012. doi:10.3189/2012/AoG60A025 [https://doi.org/10.3189/2012/AoG60A025].



	5M-HML+10

	P. Heimbach, D. Menemenlis, M. Losch, J. M. Campin, and C. Hill. On the formulation of sea-ice models. Part 2: lessons from multi-year adjoint sea-ice export sensitivities through the Canadian Arctic Archipelago. Ocean Modelling, 33(1-2):145–158, 2010. doi:10.1016/j.ocemod.2010.02.002 [https://doi.org/10.1016/j.ocemod.2010.02.002].



	5M-IF05

	P. J. Ioannou and B. F. Farrell. Application of generalised stability theory to deterministic and statistical prediction. In T. Palmer, editor, Predictability of Weather and Climate, chapter 5, pages 99–123. Cambridge University Press, 2005. doi:10.1017/CBO9780511617652.006 [https://doi.org/10.1017/CBO9780511617652.006].



	5M-Kal60

	R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1):35–45, 1960. doi:10.1115/1.3662552 [https://doi.org/10.1115/1.3662552].



	5M-Kal02

	E. Kalnay. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 2002. ISBN 978-0521796293.



	5M-Lio71

	J. L. Lions. Optimal control of systems governed by partial differential equations. Springer-Verlag, 1971. ISBN 978-0387051154.



	5M-Lor65

	E. N. Lorenz. A study of the predictability of a 28-variable atmospheric model. Tellus, 17(3):321–333, 1965. doi:10.1111/j.2153-3490.1965.tb01424.x [https://doi.org/10.1111/j.2153-3490.1965.tb01424.x].



	5M-PGBB98

	T. N. Palmer, R. Gelaro, J. Barkmeijer, and R. Buizza. Singular vectors, metrics, and adaptive observations. Journal of the Atmospheric Sciences, 55(4):633–653, 1998. doi:10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2 [https://doi.org/10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2].



	5M-RL10

	M. Rognes and A. Logg. Automated goal-oriented error control. I: stationary variational problems. Submitted to SIAM Journal on Scientific Computing, 2010.



	5M-Sch07

	P. J. Schmid. Nonmodal stability theory. Annual Review of Fluid Mechanics, 39(1):129–162, 2007. doi:10.1146/annurev.fluid.38.050304.092139 [https://doi.org/10.1146/annurev.fluid.38.050304.092139].



	5M-Tar05

	A. Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, 2005.



	5M-TB97

	L. N. Trefethen and D. Bau. Numerical Linear Algebra. Society for Industrial Mathematics, 1997.



	5M-TE05

	L. N. Trefethen and M. Embree. Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, 2005.



	5M-Wun96

	C. Wunsch. The ocean circulation inverse problem. Cambridge University Press, 1996. ISBN 9780521480901. doi:10.1017/CBO9780511629570 [https://doi.org/10.1017/CBO9780511629570].



	5M-ZHMT12

	L. Zanna, P. Heimbach, A. M. Moore, and E. Tziperman. Upper-ocean singular vectors of the North Atlantic climate with implications for linear predictability and variability. Quarterly Journal of the Royal Meteorological Society, 138(663):500–513, 2012. doi:10.1002/qj.937 [https://doi.org/10.1002/qj.937].











            

          

      

      

    

  

  
    
    

    Generalised stability theory
    

    
 
  

    
      
          
            
  
Generalised stability theory


Introduction

The stability of a physical system is a classical problem of
mechanics, with contributions from authors such as Lagrange, Dirichlet
and Lyapunov [AM-Lei10]. Stability investigates the response of
the system to small perturbations in its initial condition: if the
solutions of the perturbed systems remain within a neighbourhood of
the unperturbed solution, then the system is stable; otherwise, the
system is unstable at that initial condition.

The traditional approach for investigating the stability of physical
systems was given by Lyapunov [AM-Lya92]. The (nonlinear)
equations of motion are linearised about a base solution, and the
eigenvalues of the linearised system are computed. If all eigenvalues
have negative real part, then there exists a finite region of
stability around the initial condition: perturbations within that
region decay to zero, and the system is asymptotically stable
[AM-Par92].

While this approach has had many successes, several authors have noted
that it does not give a complete description of the finite-time
stability of a physical system. While the eigendecomposition
determines the asymptotic stability of the linearised equations as
\(t \rightarrow \infty\), some systems permit transient
perturbations which grow in magnitude, before being predicted to
decay. However, if the perturbations grow too large, the linearised
equations may cease to hold, and the system may become unstable due to
nonlinear effects. More specifically, this transient growth occurs
when the system is non-normal, i.e. when the eigenfunctions of the
system do not form an orthogonal basis [5M-Sch07].  For
example, Trefethen [1M-TTRD93] describes how the traditional
approach fails to give accurate stability predictions for several
classical problems in fluid mechanics, and resolves the problem by
analysing the nonnormality of the system in terms of pseudospectra
[5M-TE05].

Therefore, this motivates the development of a finite-time theory of
stability, to investigate and predict the transient growth of
perturbations. While Lorenz [5M-Lor65] discussed the core
ideas (without using modern nomenclature), the development of this
so-called generalised stability theory (GST) has been driven by the
work of B. F. Farrell and co-workers [AM-Far82]
[AM-Far85] [1M-FI96] [AM-FI96]. The main
idea is to consider the linearised propagator of the system, the
operator (linearised about the time-dependent trajectory) that maps
perturbations in the initial conditions to perturbations in the final
state. Essentially, the propagator is the inverse of the tangent
linear system associated with the nonlinear forward model, along with
operators to load the initial perturbation and select the final
perturbation. The perturbations that grow maximally over the time
window are given by the singular functions of the propagator
associated with the largest singular values. Since the linearised
propagator depends on the base solution, it follows that the
predictability of the system depends on the conditions of the base
solution itself: some states are inherently more predictable than
others [5M-Lor65] [5M-Kal02].



The singular value decomposition of the propagator

This presentation of generalised stability theory will consider the
stability of the system to perturbations in the initial conditions,
but the same approach can be applied to analysing the stability of the
system to perturbations in other parameters.

Consider the solution of the model at the final time \(u_T\) as a
pure function of the initial condition \(u_0\):


\[u_T = M(u_0),\]

where \(M\) is the nonlinear propagator that advances the
solution in time over a given finite time window \([0, T]\).
Other parameters necessary for the solution (e.g. boundary conditions,
material parameters, etc.)  are considered fixed. Assuming the model
is sufficiently differentiable, the response of the model \(M\) to
a perturbation \(\delta u_0\) in \(u_0\) is given by


\[\delta u_T = M(u_0 + \delta u_0) - M(u_0) = \frac{\textrm{d} M}{\textrm{d} u_0} \delta u_0 + O(\left|\left|\delta u_0\right|\right|^2).\]

Neglecting higher-order terms, the linearised perturbation to the
final state is given by


\[\delta u_T \approx L \delta u_0,\]

where \(L\) is the linearised propagator (or just propagator)
\({\textrm{d} M}/{\textrm{d} u_0}\) that advances perturbations in
the initial conditions to perturbations to the final solution.

To quantify the stability of the system, we wish to identify
perturbations \(\delta u_0\) that grow the most over the time
window \([0, T]\).  For simplicity, equip both the initial
condition and final solutions with the conventional inner product
\(\left\langle \cdot, \cdot \right\rangle\).  We seek the initial
perturbation \(\delta u_0\) of unit norm \(\left|\left|\delta
u_0\right|\right| = \sqrt{\left\langle \delta u_0, \delta u_0
\right\rangle} = 1\) such that


\[\delta u_0 = \operatorname*{arg\,max}_{\left|\left|\delta u_0\right|\right|} \left\langle \delta u_T, \delta u_T \right\rangle.\]

Expanding \(\delta u_T\) in terms of the propagator,


\[\left\langle \delta u_T, \delta u_T \right\rangle = \left\langle L \delta u_0, L \delta u_0 \right\rangle = \left\langle \delta u_0, L^*L \delta u_0 \right\rangle,\]

we see that the leading perturbation is the eigenfunction of
\(L^*L\) associated with the largest eigenvalue \(\mu\), and
the growth of the norm of the perturbation is given by
\(\sqrt{\mu}\). In other words, the leading initial perturbation
\(\delta u_0\) is the leading right singular function of
\(L\), the resulting final perturbation \(\delta u_T\) is the
associated left singular function, and the growth rate of the
perturbation is given by the associated singular value
\(\sigma\). The remaining singular functions offer a similar
physical interpretation: if a singular function \(v\) has an
associated singular value \(\sigma > 1\), the perturbation will
grow over the finite time window \([0, T]\); if \(\sigma <
1\), the perturbation will decay over that time window.

If the initial condition and final solution spaces are equipped with
inner products \(\left\langle \cdot, \cdot \right\rangle_I \equiv
\left\langle \cdot, X_I \cdot \right\rangle\) and \(\left\langle
\cdot, \cdot \right\rangle_F \equiv \left\langle \cdot, X_F \cdot
\right\rangle\) respectively, then the leading perturbations are given
by the eigenfunctions


\[X_I^{-1} L^* X_F L \delta u_0 = \mu \delta u_0.\]

The operators \(X_I\) and \(X_F\) must be symmetric
positive-definite. In the finite element context, \(X_I\) and
\(X_F\) are often the mass matrices associated with the input and
output spaces, as these matrices induce the functional \(L_2\)
norm.



Computing the propagator

In general, the nonlinear propagator \(M\) that maps initial
conditions to final solutions is not available as an explicit
function; instead, a PDE is solved. For clarity, let \(m\) denote
the data supplied for the initial condition. The PDE may be written in
the abstract implicit form


\[F(u, m) = 0,\]

with the understanding that \(u_0 = m\). We assume that for any
initial condition \(m\), the PDE can be solved for the solution
trajectory \(u\), and the nonlinear propagator \(M\) can then
be computed by returning the solution at the final
time. Differentiating the PDE with respect to the initial condition
data \(m\) yields


\[\frac{\partial F}{\partial u} \frac{\textrm{d}u}{\textrm{d}m} = - \frac{\partial F}{\partial m},\]

the tangent linear system associated with the PDE.  The term
\({\partial F}/{\partial u}\) is the PDE operator linearised about
the solution trajectory \(u\): therefore, it is linear, even when
the original PDE is nonlinear. \({\partial F}/{\partial m}\)
describes how the equations change as the initial condition data
\(m\) changes, and acts as the source term for the tangent linear
system. \({\textrm{d}u}/{\textrm{d}m}\) is the prognostic variable
of the tangent linear system, and describes how the solution changes
with changes to \(m\). To evaluate the action of the propagator
\(L\) on a given perturbation \(\delta m\), the tangent linear
system is solved with that particular perturbation, and evaluated at
the final time:


\[L \delta m \equiv - \left.\left(\frac{\partial F}{\partial u}\right)^{-1}\frac{\partial F}{\partial m} \delta m\right|_T.\]

Therefore, to automate the generalised stability analysis of a PDE, it
is necessary to automatically derive and solve the associated tangent
linear system. Furthermore, as the GST analysis also requires the
adjoint of the propagator, it is also necessary to automatically
derive and solve the adjoint of the tangent linear system. This is why
GST is considered as an application of adjoints.



Singular value computation

Once the propagator \(L\) is available, its singular value
decomposition may be computed.  There are two main computational
approaches. The first approach is to compute the eigendecomposition of
the cross product matrix \(L^*L\) (or \(LL^*\), whichever is
smaller). The second is to compute the eigendecomposition of the
cyclic matrix


\[\begin{split}H(L) =
\begin{pmatrix} 0 & L \\
              L^* & 0
\end{pmatrix}\end{split}\]

As explained in [5M-TB97], the latter option is more
accurate for computing the small singular values, but is more
expensive. As we are only interested in a small number of the largest
singular triplets, the cross product approach is used throughout this
work. Note that regardless of which approach is taken, the adjoint
propagator \(L^*\) is necessary to compute the SVD of \(L\).

The algorithm used to compute the eigendecomposition of the cross
product matrix is the Krylov-Schur algorithm [AM-Ste01], as
implemented in SLEPc [http://www.grycap.upv.es/slepc/]
[AM-HRV05] [AM-HRTV07]. As the matrix is
Hermitian (whether norms are used or not), this algorithm reduces to
the thick-restart variant [AM-WS00] of the Lanczos method
[AM-Lan50].  This algorithm was found experimentally to be
faster than all other algorithms implemented in SLEPc for the
computation of a small number of singular triplets, which is the case
of interest in stability analysis.

Rather than representing the propagator as a matrix, the action of the
propagator is computed in a matrix-free fashion, using the tangent
linear model. In turn, the entire time-dependent tangent linear model
is not stored, but its action is computed in a global-matrix-free
fashion, using the matrices associated with each individual equation
solve.  In turn, the solution of each equation solve may optionally be
achieved in a matrix-free fashion; the automatic derivation of the
tangent linear and adjoint systems supports such an approach.
Similarly, the adjoint propagator is computed in a matrix-free fashion
using the adjoint model. SLEPc elegantly supports such matrix-free
computations through the use of PETSc shell matrices [AM-BBB+11]
[AM-BGMS97].
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Mathematical background: adjoints and their applications
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Contacting the author
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Installing pyadjoint


dolfin-adjoint

To use dolfin-adjoint with FEniCS, consult the dolfin-adjoint documentation [http://www.dolfin-adjoint.org/en/latest/download/index.html].



Firedrake

Pyadjoint is automatically installed in Firedrake. No separate
installation is required.


PIP (all platforms)

Install dolfin-adjoint and its Python dependencies with pip:

pip install git+https://github.com/dolfin-adjoint/pyadjoint.git





Test your installation by running:

python3 -c "import fenics_adjoint"








Optional dependencies:


	IPOPT [https://projects.coin-or.org/Ipopt] and Python bindings (cyipopt [https://github.com/matthias-k/cyipopt]): This is the best available open-source optimisation algorithm. Strongly recommended if you wish to solve PDE-constrained optimisation problems. Make sure to compile IPOPT against the Harwell Subroutine Library [http://www.hsl.rl.ac.uk/ipopt/].


	Moola [https://github.com/funsim/moola]: A set of optimisation algorithms specifically designed for PDE-constrained optimisation problems.


	Optizelle [http://www.optimojoe.com/products/optizelle]: An Open Source Software Library Designed To Solve General Purpose Nonlinear Optimization Problems.





Source code

The source code of pyadjoint is available on https://github.com/dolfin-adjoint/pyadjoint.
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Support


Having issues?

Do you wonder about how something works, whether some feature is
supported or why you are getting an error? Feel free to ask on the
github issuetracker [https://github.com/dolfin-adjoint/pyadjoint/issues].



Checklist when asking a question

We want to help you; by making sure that you provide us with enough
information, you are more likely to get the answer you are looking
for. If you have encountered an error or a problem that you can’t figure
out, please make sure to include the following in your description of
the problem:


	A minimal, running code example that reproduces the error.


	The error message.


	The versions of fenics, dolfin-adjoint, and pyadjoint.






Contacting the authors

Use our Slack channel [https://fenicsproject.slack.com/messages/dolfin-adjoint/] to get in contact with us directly (or send us an email)!
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