
A

A framework for automated PDE-constrained optimisation
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A generic framework for the solution of PDE-constrained optimisation problems based on the FEniCS sys-
tem is presented. Its main features are an intuitive mathematical interface, a high degree of automation,
and an efficient implementation of the generated adjoint model. The framework is based upon the extension
of a domain-specific language for variational problems to cleanly express complex optimisation problems
in a compact, high-level syntax. For example, optimisation problems constrained by the time-dependent
Navier-Stokes equations can be written in tens of lines of code. Based on this high-level representation,
the framework derives the associated adjoint equations in the same domain-specific language, and uses
the FEniCS code generation technology to emit parallel optimised low-level C++ code for the solution of
the forward and adjoint systems. The functional and gradient information so computed is then passed to
the optimisation algorithm to update the parameter values. This approach works both for steady-state as
well as transient, and for linear as well as nonlinear governing PDEs and a wide range of functionals and
control parameters. We demonstrate the applicability and efficiency of this approach on classical textbook
optimisation problems and advanced examples.
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1. INTRODUCTION
Optimisation problems constrained by partial differential equations (PDEs) are ubiq-
uitous across science and engineering. Such problems consist of optimising an objec-
tive functional, e.g. maximising the performance or minimising the cost of a system,
subject to constraints given by the laws of physics [Lions 1971]: for example, an aero-
nautical engineer will want to choose the best shape for a wing to optimise its perfor-
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mance [Jameson 1988]. Inverse problems may also be treated as optimisation prob-
lems, where the goal is to infer some unobservable state from observable evidence;
this is achieved by adjusting the unknown state to minimise some misfit functional
[Le Dimet and Talagrand 1986]. This approach is now fundamental to the geosciences:
for example, it is routinely used in operational meteorology [Rabier et al. 2000].

Approximating the solution of PDEs is computationally expensive. This motivates
the use of gradient-based optimisation algorithms, since exploring the control space
without derivative information typically requires a prohibitive number of PDE evalu-
ations for practical problems. The typical case for PDE-constrained optimisation prob-
lems is that where the dimension of the control space is large, and where the number
of functionals to control is small (usually one). Therefore, their efficient solution relies
on the fast gradient computation for a small number of functionals with respect to
many parameters.

A naı̈ve approach to computing the gradient of a functional is to perturb each con-
trol parameter in turn, and approximate the gradient using finite differences. A more
sophisticated way would be to employ the tangent linear model associated with the
forward PDE system, which circumvents the problems of roundoff errors by propagat-
ing derivative information forward through the computational graph, from one input
parameter through to all outputs. However, with both of these approaches, the num-
ber of PDE solves required for a single gradient computation scales linearly with the
number of parameters, making them infeasible for the typical case described above.
By contrast, the adjoint method computes the gradient of a scalar functional with a
single PDE solve, by propagating derivative information backwards through the com-
putational graph, from the output functional back to all inputs [Giles and Pierce 2000;
Griewank and Walther 2008]. The adjoint method is a key ingredient in making the
large-scale solution of complex optimisation problems feasible.

However, deriving and implementing the adjoint PDE model is typically regarded as
difficult. This has been one of the main motivations for the development of algorithmic
differentiation techniques (AD, also called automatic differentiation), which attempt to
automate the adjoint model derivation. However, in practice the application of an AD
tool typically requires large amounts of user intervention and expertise, in particular
for advanced forward model implementations. Naumann [2012, pg. xii] states that “the
automatic generation of optimal (in terms of robustness and efficiency) adjoint versions
of large-scale simulation code is one of the great open challenges in the field of High-
Performance Scientific Computing”. Giles and Pierce [2000] observe that

Considering the importance of design to .. all of engineering, it is perhaps
surprising that the development of adjoint codes has not been more rapid ..
[I]t seems likely that part of the reason is its complexity.

In previous work, we have efficiently solved this adjoint derivation problem for the
case where the forward problem may be discretised using the finite element method
[Farrell et al. 2012]. The key contribution of this paper is to apply this advance to
automate the solution of large classes of PDE-constrained optimisation problems. The
main features of this new framework are:

Usability. The user specifies the discretised optimisation problem in a form that
resembles the mathematical notation.
Automation. Based on this problem specification, the framework performs the nec-
essary steps for the optimisation, without further user intervention. These steps
include interfacing with an optimisation method, followed by repeated PDE solves
for evaluating the objective functional and computing the functional gradient using
the automatically derived adjoint system.
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Generality. The framework handles large classes of governing PDEs, including cou-
pled, nonlinear and time-dependent PDEs. Furthermore, the user may choose from
multiple gradient-free and gradient-based optimisation algorithms.
Performance. Optimisation algorithms typically require many iterations, each of
which involve computationally expensive PDE solves. For many problems of practi-
cal interest, efficient parallel PDE solvers are therefore essential to obtain reason-
able run times. Significant work has been undertaken in order to produce efficient
assembly code in FEniCS [Kirby and Logg 2007; Markall et al. 2012; Ølgaard and
Wells 2010]. Since the adjoint model relies on the same FEniCS code generation
techniques as the forward model, the performance of the adjoint implementation
inherits the same efficiency and parallel scaling of the forward model. As a con-
sequence, the achieved adjoint efficiency ratios are often close to the optimal ratio
between 1 and 2; by contrast, a general AD tool typically yields efficiency ratios in
the range of 3 to 30 [Naumann 2012, pg. xi].

These features are achieved by exploiting the particular structure of finite element
models (in contrast to traditional AD, which attempts to solve the general case). Finite
element discretisations of the governing PDE have a natural domain-specific language,
the language of variational forms, that abstractly captures the mathematical structure
of the problem without any details of how its solution is to be achieved on a particu-
lar platform. Instead of implementing the model in tens or hundreds of thousands of
lines of a low-level language such as Fortran or C++, the user compactly describes
the discretisation of the forward problem in the Unified Form Language (UFL) [Alnæs
2011; Alnæs et al. 2012] of the FEniCS project [Logg et al. 2012]. UFL mimics the
mathematical notation almost exactly, and can express even complex time-dependent
coupled nonlinear problems in tens of lines of code.

The presented framework uses the high-level UFL representation of the forward
model for two purposes. First, the forward code is generated using the FEniCS project
in the usual way: the UFL is passed to a dedicated finite element compiler, which
generates optimised low-level C++ code for its parallel implementation on a particular
platform [Kirby and Logg 2006; Ølgaard and Wells 2010; Markall et al. 2012]. Second,
as each forward solve is executed at runtime, a symbolic tape of the forward model is
recorded in UFL format. This tape is analogous to the concept of a tape in AD [Corliss
and Griewank 1993], except that instead of recording individual floating-point oper-
ations, the units on the tape are whole equation solves. Once the forward model has
terminated, symbolic manipulation is applied to this tape to derive the UFL represen-
tation of the associated adjoint problem, which in turn is passed to the same compiler
to emit an efficient parallel implementation of the adjoint model [Farrell et al. 2012].

In this paper we discuss the extension of this system to compactly express and solve
optimisation problems. The user describes the forward model, the control parame-
ters and the objective functional in an extension of the UFL notation. The optimisa-
tion framework then repeatedly re-executes the tape to evaluate the functional value,
solves the adjoint PDE to compute the functional gradient, and modifies the tape to
update the position in parameter space until an optimal solution is found.

1.1. Related work
One of the main motivations for this work is the fact that, despite the broad applica-
bility of PDE-constrained optimisation, there exist few software packages that gather
and unify the tools required to solve such problems.

A closely related project is developed by van Bloemen Waanders et al. [2002], with
the goal of creating an optimisation framework based on the finite-element software
Sundance [Long et al. 2012]. Sundance is similar to FEniCS in that it also operates on
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variational forms: in particular, it can automatically differentiate and adjoin individ-
ual variational forms. However, the built-in automatic adjoint derivation of Sundance
does not currently extend to cases where the forward model consists of a sequence of
variational problems, which is typically the case for time-dependent problems.

Other open source alternatives include DAKOTA [Eldred et al. 1996], the Stanford
University Unstructured suite [Palacios et al. 2012] and RoDoBo [Becker et al. 2005].
The key difference between these and the framework presented here is that the dif-
ficult step of the adjoint derivation and implementation has not been automated. In-
stead, if a new PDE is to be solved the adjoint model must be derived and implemented,
either manually or with the help of AD tools, both of which demand significant devel-
opment effort and user expertise.

Finally, the PROPT [Rutquist and Edvall 2010], ACADO [Houska et al. 2011] and
CasADi [Andersson et al. 2012] toolkits are optimisation frameworks with similar de-
sign goals, but focussed on ordinary differential equations and differential-algebraic
equations instead of PDEs.

The paper is organized as follows: The next section states the general form of PDE-
constrained optimisation problems and compares different solution techniques. Sec-
tion 3 presents the newly developed framework in detail, followed by a code demonstra-
tion in section 4. In section 5 the framework implementation is verified using textbook
examples with known analytical solutions. Finally, section 6 applies the optimisation
framework to a wide range of problems before making some concluding remarks in
section 7.

2. THE FORMULATION OF PDE-CONSTRAINED OPTIMISATION PROBLEMS
We consider the PDE-constrained optimisation problem in the following general form:

min
u,m

J(u,m)

subject to F (u,m) = 0,

h(m) = 0,

g(m) ≤ 0,

(1)

where the vector m contains the optimisation parameters, F (u,m) = 0 is a system of
PDEs parameterised by m with solution vector u, and J(u,m) ∈ R is the scalar-valued
objective functional that is to be minimised. The equality and inequality constraints
h(m) = 0 and g(m) ≤ 0 enforce additional conditions on the optimisation parameters
m. A common example is a box constraint of the form:

a ≤ m ≤ b.
State constraints are not directly considered in formulation (1). However, in section 6.1
we show an example where a penalisation approach is employed to enforce state con-
straints.

Throughout this paper we assume that the above operators are sufficiently differ-
entiable, and that the PDE has a unique solution for any m, i.e. there is a solution
operator u(m) such that F (u(m),m) = 0 ∀ m.

2.1. The optimality conditions and the reduced formulation
The necessary first order optimality conditions for problem (1), also known as the
Karush-Kuhn-Tucker (KKT) conditions [Karush 1939; Kuhn and Tucker 1951], are
derived from the associated Lagrangian. Ignoring the control constraints for simplic-
ity, the Lagrangian of (1) is:

L(u,m, λ) ≡ J(u,m) + λTF (u,m) ∈ R,
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where λ is the Lagrange multiplier (also known as the dual or adjoint variable). The
KKT conditions state that for every local minimum (ū, m̄) at which some regularity
conditions are satisfied (see Hinze et al. [2009] for details), there exists a Lagrange
multiplier λ̄ such that:

∂L
∂u

(ū, m̄) =
∂J

∂u
(ū, m̄) + λ̄T

∂F

∂u
(ū, m̄) = 0, (2a)

∂L
∂m

(ū, m̄) =
∂J

∂m
(ū, m̄) + λ̄T

∂F

∂m
(ū, m̄) = 0, (2b)

∂L
∂λ

(ū, m̄) = F (ū, m̄) = 0. (2c)

Equation (2b) is referred to as the adjoint equation; (2c) recovers the governing PDE.
Solving (2b) for λ̄ and substituting the result into the control equation (2a) yields that
the total derivative of the objective functional vanishes at the optimal point.

One approach to compute a local solution of problem (1), known as the all-at-once ap-
proach, simultaneous analysis and design, or the oneshot approach, is to directly solve
the KKT system (2). A common solution method is sequential quadratic programming
(SQP), which for the simplified case considered here is equivalent to applying New-
ton’s method to the KKT system (2). A key advantage of SQP is that it inherits the fast
local quadratic convergence to a local solution from Newton’s method [Boggs and Tolle
1995]. However, the KKT system (2) yields significant challenges for numerical solvers:
it is a coupled, nonlinear and often ill-conditioned system of PDEs and the resulting
linear systems that need to be solved for each SQP update are high-dimensional. This
issue becomes particularly problematic in the case of time-dependent governing PDEs
where the discrete solution vectors u and λ contain the entire forward and adjoint
solution trajectories over time and space.

Since direct solver methods are typically not suitable to solve linear problems of
such dimensions, iterative solvers in combination with advanced preconditioning tech-
niques are often applied and show promising results in certain applications [Batter-
mann and Sachs 2001; Biros and Ghattas 2000; Schöberl and Zulehner 2007]. An al-
ternative approach is to use a space reduction method; here, the solution of the full
linear systems is avoided by performing a block-LU decomposition [Byrd and Nocedal
1990; Biegler et al. 1995; Schulz 1998]. As a result, the system is uncoupled and can
be solved in separate steps of more manageable size. Reduced SQP methods have been
successfully applied to various applications [Kupfer and Sachs 1992; Orozco and Ghat-
tas 1992; Orozco and Ghattas 1997].

The all-at-once approach has the disadvantage that the current estimate of u, m
and λ must be stored at any time. For large, time-dependent problems, storing the
whole estimate of the forward and adjoint solutions u and λ can quickly exceed the
available memory: for example, a simulation with 106 spatial degrees of freedom and
108 timesteps would require roughly 1000 TB of memory in double point precision,
exceeding the memory capacities of most available computers.

This issue can be circumvented by performing a space reduction on the original op-
timisation problem (1). This approach (also known as black-box or nested analysis
and design approach) replaces the objective functional J(u,m) with the reduced func-
tional Ĵ(m) ≡ J(u(m),m), that is the functional is considered as a pure function of the
optimisation parameters. Since the reduced functional implicitly enforces the solution
of the PDE, the PDE-constraint becomes superficial in the optimisation formulation.
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The result is the following reduced optimisation problem:

min
m

Ĵ(m)

subject to h(m) = 0,

g(m) ≤ 0.

(3)

This formulation has the practical advantage that the dimension of the optimisa-
tion problem is greatly reduced, since the dimension of m is typically much smaller
than that of the PDE solution u. Consequently, many robust and established opti-
misation methods are directly applicable. Furthermore, the storage requirement is
significantly lowered; firstly because the adjoint solution is only used for computing
the functional gradient and does not need to be saved and secondly because the stor-
age of the entire forward solution trajectory may be avoided by using a checkpointing
strategy to balance storage and computation cost. This allows the solution of large
scale optimisation problems for which storing the whole forward solution would be im-
possible [Griewank 1992]. In the example above, the optimal checkpointing scheme
implemented by Griewank and Walther [2000] with 1000 checkpoints reduces the stor-
age cost to approximately 10 GB while the computational cost approximately doubles.
Another advantage of the reduced formulation is that the governing PDE is always sat-
isfied after each optimisation iteration. Hence, the optimisation loop may be stopped
as soon as the functional is sufficiently reduced, simplifying the formulation of termi-
nation criteria.

Long et al. [2012] state that for steady problems, the all-at-once can outperform the
reduced formulation by a wide margin, but that for time-dependent systems, the re-
duced formulation is often preferable. Since the framework supports time-dependent
problems, the current implementation solves the optimisation problem in the reduced
formulation (3). However, in principle all components for solving the all-at-once ap-
proach are available, and we plan to implement this approach in future work. Fur-
thermore, the reduced formulation is often used to precondition the all-at-once ap-
proach [Biros and Ghattas 2000].

The following example illustrates the two formulations (1) and (3) on a classical op-
timal control problem (see for example Tröltzsch [2005, chapter 2.1.5] or Hinze et al.
[2009, chapter 1.5.3]): given a thin, heatable plate Ω ⊂ R2 with fixed temperature at
the domain boundary ∂Ω, what is the optimal heating function that should be applied
to obtain a desired temperature profile? This problem can be formulated as an optimi-
sation problem constrained by the stationary heat equation:

min
u,m

1

2
‖u− ud‖2L2(Ω) +

α

2
‖m‖2L2(Ω)

subject to−∇2u = m on Ω,

u = 0 on ∂Ω,

a ≤ m ≤ b on Ω.

(4)

Here ud : Ω → R is the desired temperature profile and u : Ω → R is the solution
of the stationary heat equation with homogeneous Dirichlet boundary conditions. The
objective functional measures the misfit between the PDE solution and the desired
temperature profile plus a regularisation term that is multiplied by a scaling factor
α ≥ 0. The optimisation parameter m : Ω → R controls the heat source and is limited
by the box constraints.

Under mild assumptions, the heat equation with Dirichlet boundary conditions
yields a unique solution for any source parameterm [Hinze et al. 2009, §1.3.1.1]. Hence
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there exists a solution operator u(m) and the reduced problem may be formulated:

min
m

1

2
‖u(m)− ud‖2L2(Ω) +

α

2
‖m‖2L2(Ω)

subject to a ≤ m ≤ b on Ω.

This problem will be used for the code example in section 4.

3. THE OPTIMISATION FRAMEWORK
The core of the framework relies on two software components: first, the FEniCS sys-
tem [Logg et al. 2012; Logg 2007] is used to solve the forward and adjoint PDEs. Sec-
ond, it relies on libadjoint and dolfin-adjoint [Farrell et al. 2012] to automatically de-
rive the associated adjoint system for gradient computations. In this work we have
extended the dolfin-adjoint framework to go beyond adjoint derivation, to automate
the solution of PDE-constrained optimisation problems.

The following sections discuss these components in detail. The source code, includ-
ing the examples and applications in the following sections, is available at http:
//dolfin-adjoint.org.

3.1. The FEniCS system
The FEniCS system is a collection of software components for automating the solution
of PDEs by the finite element method. This section gives a brief introduction to the
FEniCS system. A thorough overview can be found in Logg et al. [2012].

To solve a PDE with the FEniCS system, the user defines its discretised weak form
in the domain specific language UFL that mimics and encodes the mathematical for-
mulation [Alnæs 2011; Alnæs et al. 2012]. This high-level formulation is then passed
to a finite element form compiler such as FFC [Kirby and Logg 2006], which generates
optimised low-level code for the evaluation of the local element tensors. This generated
code is used by DOLFIN [Logg and Wells 2010; Logg et al. 2011] to globally assemble
and solve the problem. DOLFIN also provides the data structures for meshes, function
spaces and functions.

For time-dependent PDEs, the temporal discretisation is usually performed with a
non-finite element discretisation scheme. In this case, the user writes the time loop
manually and solves the variational problem for each timelevel as described above.

DOLFIN has interfaces for both C++ and Python. The Python interface uses just in
time compilation, i.e. it invokes the necessary compilers at runtime. In contrast, the
code generation for the C++ interface happens at a preprocessing step before running
the forward model. As a consequence, the high-level description of the forward problem
is not directly available at runtime in the C++ interface. Because dolfin-adjoint relies
on this data to perform runtime inspection and manipulation, the remaining sections
discuss only the Python interface to DOLFIN.

3.2. libadjoint and dolfin-adjoint
The libraries libadjoint and dolfin-adjoint enable the automatic derivation and solution
of tangent linear and adjoint models from forward models written in DOLFIN.

The purpose of libadjoint is to facilitate the development of tangent linear and ad-
joint models based on the fundamental abstraction of considering the forward model as
a sequence of equation solves. Based on this abstraction, the library builds a symbolic
description of the forward model, the tape, from which it can automatically derive the
symbolic representation of the associated tangent linear and adjoint systems.

The software library dolfin-adjoint acts as the between DOLFIN and libadjoint. It
inspects DOLFIN’s problem description at runtime, and performs the required tasks
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discrete forward equations [UFL] FEniCS system−−−−−−−−−→ forward model [code]

libadjoint, dolfin-adjoint
y

discrete adjoint equations [UFL] FEniCS system−−−−−−−−−→ adjoint model [code]

Fig. 1: The automated generation of the adjoint model with dolfin-adjoint. The user
specifies the discrete forward equations in the high-level UFL language. From that
symbolic representation of the problem, libadjoint and dolfin-adjoint can derive the
corresponding representation of the discrete adjoint equations in UFL. Both the for-
ward and adjoint equations are passed to the FEniCS system to generate the forward
and adjoint model implementations.

for applying libadjoint without user intervention. The tangent linear and adjoint mod-
els produced with libadjoint are represented in the same high-level data format as the
forward model. Therefore, the code generation techniques in FEniCS can be applied
to the adjoint model in the same manner as the forward model, see figure 1. Farrell
et al. [2012] showed that this approach leads to a robust, automatic and efficient way
of implementing tangent linear and adjoint models.

3.3. The optimisation framework
3.3.1. Introduction. The proposed framework extends dolfin-adjoint to solve PDE-

constrained optimisation problems. The optimisation process consists of iteratively
evaluating the functional of interest and its gradient at different points in the param-
eter space. The key idea is to automate these evaluations by operating purely on the
tape of the forward model recorded by libadjoint. In particular, a functional evaluation
is obtained by replaying the tape (which runs the forward model) while simultaneously
evaluating the objective functional. The functional gradient is computed by deriving
and solving the adjoint model, as described in the previous section. When the optimisa-
tion algorithm updates the point in parameter space, the tape is modified accordingly.

With this approach, the only inputs required from the user are the objective func-
tional, the control parameters and the governing PDEs, optionally with additional
equality and inequality constraints.

3.3.2. User interface. The solver for an optimisation problem is typically implemented
in the following three steps.

First, the user implements the governing PDE in the Python interface of
DOLFIN [Logg et al. 2012]. DOLFIN supports linear and nonlinear as well as steady
and transient PDEs, and has been used to solve complex coupled systems such as
the Reynolds-averaged Navier-Stokes equations for turbulent flows [Mortensen et al.
2011], the Stokes equations for mantle convection [Vynnytska et al. 2013], and the
Cahn-Hilliard equations for phase separation [Wells et al. 2006].

Second, the user defines the objective functional and the optimisation parameters.
For that, a Functional class has been introduced that extends DOLFIN to support the
expression of time-dependent functionals. For example, an objective functional com-
puting: ∫ T

0

∫
Ω

u · v dxdt

is defined by:
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J = Functional(inner(u, v)*dx*dt)

Alternatively, the functional can be evaluated at a specific time. For example∫
Ω

u(t = 1) · v(t = 1) dx,

is implemented by:

J = Functional(inner(u, v)*dx*dt[1])

Functionals may consist of forms integrated over time, forms evaluated at a particular
time, and sums of these. This allows the construction of complex objective function-
als, e.g. a data assimilation problem with a regularisation term involving the initial
condition might use the following objective functional:∫ T

0

‖u− uobs‖2L2(Ω) dt+ |u(t = 0)|2H1(Ω).

The implementation of that functional is:

J = Functional(inner(u - u_obs, u - u_obs)*dx*dt
+ inner(grad(u), grad(u))*dx*dt[0])

Similarly, the user specifies the optimisation parameter m. For example, the following
code defines the optimisation parameter to be the initial value of u:

m = InitialConditionParameter(u)

If a scalar value s is to be optimised, one may use

m = ScalarParameter(s)

In the final step, the user defines the reduced functional Ĵ with

J_hat = ReducedFunctional(J, m)

In order to optimise for multiple parameters simultaneously, the user can optionally
pass a list of Parameter objects.

At this point, the reduced functional object J hat can be used to solve the associated
minimisation problem minm Ĵ(m) by calling:

m_opt = minimize(J_hat)

or the associated maximisation problem maxm Ĵ(m) by calling:

m_opt = maximize(J_hat)

Both of these functions solve the optimisation problem with the default settings and
return the optimised parameters when finished. Additional arguments may be used to
set and configure the optimisation algorithm and to define box, inequality or equality
constraints, e.g.:

m_opt = maximize(J_hat, bounds = (u_lower, u_upper), method='SLSQP')

Currently, the framework supports most of the algorithms in the optimisation pack-
age of SciPy [Jones et al. 2001]. For problems without additional constraints these
are:
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— the Nelder-Mead method [Nelder and Mead 1965];
— a modification to Powell’s method [Powell 1964];
— a nonlinear conjugate gradient method [Nocedal and Wright 2006, §5.2];
— the BFGS method [Nocedal and Wright 2006, §6.1];
— the Newton-CG method [Nocedal and Wright 2006, §7.1]
— and simulated annealing [Laarhoven and Aarts 1987].

Both Powell’s method and simulated annealing are gradient-free optimisation algo-
rithms. For problems with box, inequality or equality constraints, the user has the
choice between:

— sequential quadratic programming [Kraft 1994];
— the gradient-free Constrained Optimization by Linear Approximation method [Pow-

ell 1994].

Finally, if only box-constraints are present, the

— L-BFGS-B method [Nocedal and Wright 2006, §7.2];
— a Newton-CG implementation that supports box constraints [Nash 1984],

may be used.
The user also has access to more advanced features, such as to automatically ver-

ify each gradient computation with the Taylor remainder convergence test during the
optimisation procedure, or to execute user-supplied code after each gradient computa-
tion, for example to create convergence plots.

3.3.3. Implementation. The ReducedFunctional class provides two main functionalities:
the evaluation of the objective functional for a given parameter value, and the compu-
tation of the functional gradient.

The functional evaluation is implemented by solving the forward equations that
have been stored on libadjoint’s tape and simultaneously computing the objective func-
tional. However, the tape contains the parameter values of the initial forward run and
a naı̈ve replay would reevaluate the forward model with the original parameters. This
issue is resolved by first modifying the tape so that it reflects the most recent parame-
ter values before executing the functional evaluation.

The implementation of the gradient computation relies on the adjoint derivation of
libadjoint and dolfin-adjoint to compute the gradient with the adjoint approach. Op-
tionally, the user may use a checkpointing scheme to balance the storage and recom-
putation cost of the gradient computation [Griewank 1992; Farrell et al. 2012].

The minimize and maximize routines implement the interface to the optimisation al-
gorithms. Optimisation methods typically require the implementation of the functional
evaluation and its gradient. The minimize and maximize routines generate these func-
tions using the ReducedFunctional object. This involves the conversion of DOLFIN
data structures to generic array data types on which the optimisation algorithms op-
erate.

Parallel execution is often crucial in PDE-constrained optimisation to achieve rea-
sonable run times. While DOLFIN supports the parallel solution of the forward and
adjoint models, the considered implementations of the optimisation algorithms are not
designed for distributed execution. The minimize and maximize routines circumvent
this problem by executing the PDE solves in parallel, but replicating the optimisation
computation on each processor. For that, the minimize and maximize functions serialise
the distributed data structures of the optimisation parameters, the functional gradi-
ent and the constraints, as these are used by the optimisation algorithm. All other
variables, in particular the forward and adjoint solutions, remain distributed and are
not communicated. This approach works well for small-scale optimisation problems,
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where the communication time for gathering the data and the execution time spent in
the optimisation algorithm is small compared to the runtime of the PDE solves. For
large-scale optimisation problems one should consider interfacing a parallel optimisa-
tion algorithm, such as TAO [Munson et al. 2012] or OPT++ [Meza 1994].

Finally, there are cases where optimisation based purely on libadjoint’s tape is not
desired. For example, a forward model with an adaptive timestepping scheme changes
the timestep according to certain conditions. This adaptivity is not reflected in the
tape, and hence the optimisation process would only use the timestep choice that was
used to build the tape. In such cases, the user can manually implement the functional
evaluation; however, this approach has the disadvantage that the computed gradients
become inconsistent with the discrete forward model, which can result in a reduced
convergence of the optimisation algorithm.

3.4. Restrictions
The first restrictions are those associated with the adjoint computation [Farrell et al.
2012, §5.4]. In particular, the automated adjoint derivation relies on the differentiabil-
ity of the forward model, and that the forward model is implemented entirely in the
Python interface to DOLFIN.

State constraints other than the PDE constraint are not handled automatically.
However, the framework does provide many of the tools required to implement the
solution of such problems. An example is presented in section 6.1, where a problem
with a variational inequality is broken down into a sequence of PDE-constrained opti-
misation problems, each of which is solved with the framework presented here.

Another restriction is that shape optimisation is not yet automated. It is possible
to apply the shape calculus approach [Schmidt and Schulz 2010; Schmidt et al. 2011]
which derives an expression for the shape gradient of the functional in terms of the
forward and adjoint solutions, which may then be computed using the automatically
generated adjoint model. In future work, we plan to automate this shape calculus anal-
ysis to extend the framework to support automated shape optimisation.

4. EXAMPLE CODE
This section demonstrates the application of the presented optimisation framework
to two optimal control problems. The first example solves the optimal heating prob-
lem (4). The governing PDE in this case is the stationary heat equation. The second
example replaces the stationary heat equation with a time-dependent, nonlinear PDE.
Although this problem adds significant complexity to the forward and adjoint PDEs,
the required code changes are minimal.

4.1. Distributed control of the heat equation
The first example solves the optimal control problem of the stationary heat equa-
tion (4). The problem possesses a unique optimal solution if the box constraints a and
b are bounded [Tröltzsch 2005, chapter 2.5.1]. Otherwise the regularisation term must
be strictly positive, i.e. α > 0, to ensure uniqueness. In the following example, these
conditions are satisfied by choosing α = 0, a = 0 and b = 0.5.

To begin with, the user implements and solves the forward problem. By doing so, the
optimisation framework creates the tape of the forward model. This tape is used by
the optimisation framework to compute all future functional evaluations and gradient
computations.

For this example the two-dimensional domain Ω ≡ [−1, 1]2 was uniformly discretised
using triangular elements. The finite-dimensional function spaces are constructed us-
ing P1CG elements for the PDE solution u and the desired temperature profile ud, and
P0DG elements for the heat source m. The latter choice is motivated by the fact that
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the control can possess discontinuities for α = 0. The following Python code initialises
the domain, the function spaces and all required functions in DOLFIN:

1 # Define the domain [-1, 1] x [-1, 1]
2 n = 200
3 mesh = RectangleMesh(-1, -1, 1, 1, n, n)
4 # Define the function spaces
5 V = FunctionSpace(mesh, "CG", degree = 1)
6 W = FunctionSpace(mesh, "DG", degree = 0)
7 # Define the functions
8 u = Function(V, name = "Solution")
9 m = Function(W, name = "Control")

10 v = TestFunction(V)

The weak form of the heat equation is obtained by multiplying the PDE with a test
function v ∈ V , then integrating the result over the domain and integrating by parts.
The resulting weak formulation is: find u ∈ V such that:

〈∇u,∇v〉Ω = 〈m, v〉Ω ∀v ∈ V.
The associated code resembles the mathematical notation closely:

11 # Solve the forward model to create the tape
12 F = (inner(grad(u), grad(v)) - m*v)*dx
13 bc = DirichletBC(V, 0.0, "on_boundary")
14 solve(F == 0, u, bc)

Next, the objective functional is defined. In this example, the desired temperature
profile ud is defined as:

ud(x, y) = e−1/(1−x2)−1/(1−y2),

plotted in figure 2a. The relevant code is:

15 # Define the functional of interest
16 u_d = exp(-1/(1-x[0]*x[0])-1/(1-x[1]*x[1]))
17 J = Functional((0.5*inner(u-u_d, u-u_d))*dx)

At this point, the optimal control problem can be solved:

18 # Define the reduced functional
19 J_hat = ReducedFunctional(J, SteadyParameter(m))
20 # Solve the optimisation problem
21 m_opt = minimize(J_hat, method = "L-BFGS-B", bounds = (0.0, 0.5),
22 options = {"gtol": 1e-16, "ftol": 1e-16})

The last parameter of minimize sets the termination condition to stop if either the
infinity norm of the projected gradient or the relative change of the functional value
drops below the specified tolerance.

The optimisation algorithm starts with a zero estimate for the control, i.e. m(0) = 0.
The corresponding functional value is Ĵ

(
m(0)

)
= 8.9× 10−3. The results of the optimi-

sation are shown in figure 2. The final value of the objective functional is 1.4 × 10−4.
The desired and optimised temperature profile are of similar shape, but their maxi-
mum values differ significantly. This is reflected in the fact that the box constraints
are active in large parts of the domain (figure 2d).
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(a) Desired temperature profile ud (b) Optimised temperature profile u

(c) Difference between optimised and de-
sired temperature profiles u− ud

(d) Optimised heat source control m

Fig. 2: The solutions of the stationary optimal heating problem with box constraints.
The heat source control is limited by the box constraints in large parts of the domain,
which leads to a relatively large difference between the desired and optimised temper-
ature profiles.

By removing the box constraints, a better agreement between the desired and op-
timised temperature profiles is expected. Therefore the box constraints were removed
and the regularisation parameter set to α = 10−7, in order to ensure the uniqueness of
the optimal solution. The results are shown in figure 3. Compared to the previous re-
sults, the pointwise difference between the desired and optimised temperature profiles
is significantly decreased, yielding a final functional is 1.6× 10−7.

4.2. Distributed control of a nonlinear, time-dependent PDE
This example modifies the optimal heating problem by replacing the stationary heat
equation with a time-dependent, nonlinear PDE:

min
m

1

2
‖u(t = T )− ud‖2L2(Ω) +

α

2
‖m‖2L2(Ω)

subject to
∂u

∂t
−∇2u+ u3 = m on Ω× (0, T ],

u = 0 on ∂Ω× (0, T ],

u = 0 for Ω× {0},
a ≤ m ≤ b on ∂Ω× (0, T ],

(5)

where u : Ω× (0, T ]→ R and ud : Ω× (0, T ]→ R are the time-dependent PDE solution
and desired temperature profile, respectively, and the control m : Ω → R is constant
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(a) Desired temperature profile ud (b) Optimised temperature profile u

(c) Difference between optimal and desired
temperature profiles u− ud

(d) Optimised heat source control m

Fig. 3: The solutions of the stationary optimal heating problem without box con-
straints. The optimised heat source control achieves a good agreement between the
desired and optimised temperature profiles.

in time. The nonlinearity and time-dependency of the new governing PDE adds signif-
icant complexity to the solution process of the optimisation algorithm. In particular,
the gradient computations involve the storage of the forward solution trajectory (or
the application of some checkpointing scheme) and the solution of the associated time-
dependent adjoint system.

However, since the steps for recording the tape and the functional and gradient eval-
uations are automated, the code from the previous example can be reused almost en-
tirely to solve problem (5). The only modification required is to replace the weak formu-
lation of the heat equation with the new governing PDE. The following Python code
shows an example implementation with a backward Euler time discretisation and a
Newton solver for the nonlinear equation solve at each timestep:

11 # Define the weak form
12 timestep = 0.01
13 F = ((u - u_old)*v/timestep + inner(grad(u), grad(v)) + u**3*v - m*v)*dx
14 # Perform 10 timesteps
15 for t in range(11):
16 solve(F == 0, u, bc)
17 u_old.assign(u)
18 adj_inc_timestep()
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Element size
∥∥m−mopt

∥∥ order
∥∥u− uopt

∥∥ order
1.25× 10−1 9.54× 10−2 3.83× 10−4

6.25× 10−2 3.70× 10−2 1.34 9.03× 10−5 2.08
3.12× 10−2 1.71× 10−2 1.11 2.20× 10−5 2.03
1.56× 10−2 8.33× 10−3 1.04 5.43× 10−6 2.02
7.81× 10−3 4.11× 10−3 1.02 1.36× 10−6 2.00

Table I: The rate of convergence for the smooth control test. The control error shows
the expected first order convergence, and the PDE solution converges as expected at
second order.

The optimisation framework can also use a checkpointing scheme to reduce the
storage cost of the gradient computations. For example, the multistage checkpointing
scheme developed by Stumm and Walther [2009], which supports storing checkpoints
both in RAM and on disk, is activated with:

adj_checkpointing(strategy='multistage', steps=11,
snaps_on_disk=2, snaps_in_ram=3)

5. VERIFICATION
This section applies the optimisation framework to problems with analytical solutions
in order to compare the numerical order of convergence with the theoretical expecta-
tion. An agreement of the convergence rates is considered to be a strong indicator that
the implementation is correct [Salari and Knupp 2000].

The considered analytical solutions are based on the optimal control problem (4) of
the heat equation, extended with an additional source term s : Ω→ R:

min
m
‖u− ud‖2L2(Ω)

subject to −∇2u = m+ s in Ω,

u = 0 on ∂Ω,

− 1 ≤ m ≤ 1 in Ω.

(6)

The following sections perform the two convergence tests, the first one with a contin-
uous optimal control function, and the second one with a discontinuous optimal control
function.

5.1. Smooth control
The first test is based on an analytical solution with a smooth optimal control function:

mopt(x, y) ≡ sin (πx) sin (πy) ,

uopt(x, y) ≡ uopt
d (x, y) ≡ 1

2π2
sin(πx) sin(πy),

s ≡ 0.

It is easy to see that this choice forms an optimal solution to problem (6).
The discretisation and optimisation parameters are configured identically to the

setup described in section 4.1. Then the convergence test was performed on five uni-
formly discretised meshes with decreasing mesh element sizes. The resulting errors
and convergence rates are given in table I. The first-order convergence for the control
solution m is expected as the underlying function space is discretised with P0DG fi-
nite elements. Similarly, a second-order rate of convergence is observed for the PDE
solution u, as it is discretised with P1CG finite elements.
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Element size
∥∥m−mopt

∥∥ order
∥∥u− uopt

∥∥ order
3.13× 10−2 4.76× 10−2 7.38× 10−4

1.56× 10−2 2.41× 10−2 0.99 2.01× 10−4 1.89
7.81× 10−3 1.20× 10−2 1.00 5.04× 10−5 1.99
3.91× 10−3 5.30× 10−3 1.18 1.24× 10−5 2.03
1.95× 10−3 2.30× 10−3 1.20 2.54× 10−6 2.29

Table II: The rate of convergence for the bang-bang control test. The control error
shows the expected first order convergence, and the PDE solution converges at second
order as expected.

5.2. Bang-bang control
The second verification test is motivated by the fact that box constraints can lead to
optimal control solutions with discontinuities. The following test, derived in Tröltzsch
[2005, chapter 2.9.1], yields an optimal control function with discontinuities in a
chessboard-like shape:

mopt(x, y) ≡ −sign (− sin (8πx) sin (8πy)) .

This kind of control, where the control values jump from one box constraint limit to
the other, is also known as bang-bang control. The optimal state solution is chosen to
be:

uopt(x, y) ≡ sin(πx) sin(πy).

By applying the optimality conditions, the source term s and the desired PDE solution
ud are obtained:

s(x, y) ≡ 2π2 sin(πx) sin(πy) + sign (− sin (8πx) sin (8πy)) ,

and:

ud(x, y) ≡ sin(πx) sin(πy) + sign (− sin (8πx) sin (8πy)) .

The convergence test is performed with the same configuration as in the previous
test. The resulting errors and convergence rates are given in table II. It shows the
expected first-order convergence for the control and second-order convergence for the
state solution, indicating that the optimisation implementation is correct.

6. APPLICATIONS
6.1. Optimal control governed by an elliptic variational inequality
In this section we apply the framework to an optimal control problem investigated in
Hintermüller and Kopacka [2011, §5.2]. This problem involves a variational inequality
constraint on the state, and is an example of a mathematical program with equilibrium
constraints (MPEC). Let K = {v ∈ H1

0 (Ω) : v ≥ 0}. The problem is stated as:

min
u,m

J(u,m) =
1

2
||u− ud||2L2(Ω) +

ν

2
||m||2L2(Ω) (7a)

subject to u ∈ K, (7b)
〈∇u,∇(v − u)〉Ω ≥ 〈f +m, v − u〉Ω ∀ v ∈ K, (7c)
a ≤ m ≤ b a.e. in Ω, (7d)

where u : Ω→ R2 is the state variable, ud : Ω→ R2 is a prescribed state to be matched,
m : Ω → R is the control variable to be determined, f : Ω → R is a prescribed source
term, a ∈ R and b ∈ R are the lower and upper bounds on the control, and ν ∈ R is a
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Fig. 4: The feasibility violation of the state solution u as a function of α. As α ap-
proaches 0, the variational inequality u ≥ 0 a.e. in Ω ⊂ R2 is enforced.

regularisation parameter. Note that the inequality u ≥ 0 a.e. is implied by u ∈ K. Fol-
lowing the penalisation approach [Trémolières et al. 1981; Hintermüller and Kopacka
2011], the variational inequality can be approximated by the penalised equation:

(∇u,∇v) +
1

α
(−max (0,−u), v) = (f +m, v) ∀ v ∈ H1

0 (Ω), (8)

where α > 0 is the penalty parameter. It is well known that the solution uα of (8)
converges to that of the variational inequality (7c) as α ↓ 0. As the max operator is not
differentiable, it is regularised in turn with a smoothing parameter ε > 0 (the “global”
regularisation of Hintermüller and Kopacka [2011, equation (2.4)]). Therefore, to solve
(7), a sequence of problems are solved where the variational inequality (7c) is replaced
with the regularised penalised equality constraint (8), and the penalisation parameter
α is driven to zero. The solution of one iteration is used as the initial guess for the next.

The PDE constraint is discretised using linear finite elements for the state and con-
trol. The PDE is first solved once with a zero control m to build a tape of the forward
model, and then all subsequent steps are performed by operating on this tape. The
value of ε is set to 10−4, while ν is set to 10−2. The remaining parameters are taken
from Hintermüller and Kopacka [2011, §5.2]). The value of α is initialised to 10−3 and
halved at each penalisation iteration. The penalised subproblem is solved with a call
to minimize, which applies a limited-memory BFGS algorithm with control bounds
support [Zhu et al. 1997]. The entire program consists of less than 50 lines of code.

The feasibility of the state is measured by computing the diagnostic
||max (0,−u)||L2(Ω); figure 4 shows its evolution as a function of α. The control
and state solutions of the optimal control problem are shown in figure 5. Excellent
agreement is found with the solutions of Hintermüller and Kopacka [2011, figures 5
and 6], giving confidence that the solutions are correct.
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(a) The optimised state u (b) The optimised control m

Fig. 5: The solutions of the optimal control problem with a variational inequality.

Runtime (s) Ratio
Forward model 69.08

Forward model + adjoint model 77.85 1.126

Table III: Timings for the MPEC gradient calculation. The efficiency of the adjoint
approaches the theoretical ideal value of 1.125.

Finally, the efficiency of the gradient calculation ∇Ĵ is benchmarked. For gradient-
based optimisation algorithms to be practical, the computation of the gradient must
be affordable. To investigate the performance of the adjoint-based gradient calculation,
one execution of the forward and adjoint models was timed; this was repeated several
times to ensure the results were representative. The results are shown in table III.
As the forward model in this case takes eight Newton iterations to converge, the ad-
joint should take approximately one eighth the cost of the forward model, for an ideal
R = (forward+adjoint)/(forward) ratio of 1.125. The observed ratio is 1.126, demonstrat-
ing the claim in Farrell et al. [2012] that the gradient calculation with dolfin-adjoint
approaches optimal theoretical efficiency.

6.2. Optimal placement of tidal turbines
This application investigates an essential problem in the tidal energy industry. The
core idea is to place turbines in the ocean to extract the kinetic energy of the tidal
flow and convert it into electricity. In order to extract an economically useful amount
of power, many turbines (possibly hundreds) must be deployed in the tidal stream. The
question is: how should these turbines be placed in relation to each other to maximise
the power extracted? The strong nonlinear interaction between the turbines, the com-
plicated constraints on the configuration (legal site restrictions, bounds on the gradient
of the seafloor), and the sensitive dependence of the power on the configuration make
it difficult to manually identify an optimal configuration.

This problem is formulated as an optimisation problem constrained by the station-
ary, nonlinear shallow water equations with appropriate initial and boundary condi-
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(a) The computational domain; the feasible turbine po-
sitions are coloured pink
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Fig. 6: The solution of the optimal turbine layout problem.

tions:
max
u,m

J(u,m)

subject to u · ∇u− ν∇2u+ g∇η =
cb + ct(m)

H
‖u‖u on Ω,

∇ · (Hu) = 0 on Ω,

(9)

where Ω ⊂ R2 is the computational domain, the unknowns u : Ω → R2 and η : Ω → R
are the depth-averaged velocity and the free-surface displacement, respectively, H ∈ R
is the water depth at rest, g ∈ R is the gravitational force, ν ∈ R is the viscosity coef-
ficient, and cb ∈ R and ct represent the quadratic bottom friction and the turbine pa-
rameterisation, respectively. In a practical application, problem formulation (9) should
of course be extended to the time-dependent shallow water equations to account for
the flood and ebb tides.

The functional of interest J is defined to be the power extracted due to the increased
friction in the turbine farm [Ben Elghali et al. 2007; Divett et al. 2011]:

J(u,m) ≡ 1

2

∫
Ω

ρct(m)‖u‖3dΩ, (10)

where ρ is the density of water.
The vector of parameters m ∈ R2N in (9) encodes the x and y positions of N turbines

as:

m = (px1 , p
y
1, p

x
2 , p

y
2, . . . , p

x
N , p

y
N )T .
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Runtime (s) Ratio
Forward model 30.41

Forward model + adjoint model 34.22 1.125

Table IV: Timings for the turbine position gradient calculation. The efficiency of the
adjoint is that of the theoretical value of 1.125.

The turbines are parameterised by increased friction located around the turbine cen-
tres. The corresponding friction function ct(m) is defined as:

ct(m)(x, y) ≡
N∑
i=1

Kψpxi ,r(x)ψpyi ,r(y), (11)

where K = 21 is a scaling factor, r = 40 m is the extent of the parameterised turbine,
and ψ is a smooth bump function with compact support defined as:

ψp,r(x, y) ≡
{
e1−1/(1−‖ (x,y)T −p

r ‖2) for ‖ (x,y)T−p
r ‖ < 1,

0 otherwise.

The shallow water equations were discretised using the P2-P1 finite-element pair.
For performance reasons, the function ct(m) was implemented in Python instead of
expressing it as part of the UFL formulation. Consequently, the dependency on m does
not occur explicitly in the UFL form and hence dolfin-adjoint cannot automatically
compute its derivative. However, dolfin-adjoint is able to automatically compute the
derivative of J with respect to ct, and so this problem can be circumvented by over-
loading the ReducedFunctional class and manually implementing the final step of the
chain rule:

∇Ĵ(m) =
dĴ
dct

dct
dm

.

The first term is automatically computed using dolfin-adjoint. The second term
can easily be derived and implemented by hand by differentiating (11). Once this
ReducedFunctional class was implemented, the optimisation framework could be used
as usual.

The example considered here optimises a deployment site near the Orkney Islands
in Scotland, where 32 turbines are to be installed (figure 6a). A constant input flow with
2 m/s speed is enforced on the left boundary, while the free-surface displacement on the
right boundary is set to zero. A no-normal flow condition is applied on all remaining
boundaries. The remaining parameters are H = 50 m, ν = 90 m2/s, g = 9.81 m/s2.

The turbines are initially distributed in a structured manner as shown in figure 6c.
The optimisation was performed using the SQP implementation of Kraft [1994] until
the relative reduction of the functional of interest dropped below 10−6. Bound con-
straints ensured that the turbines remained in the site area, which models the fact
that site developers acquire a license for a particular site, and cannot deploy outside
it. Furthermore, a set of inequality constraints were used to enforce a minimum dis-
tance of 60 m between each turbine.

The results are presented in figure 6. The optimisation algorithm terminated after
81 iterations. The optimisation increased the total power output of the turbine farm by
12%, from an initial value of 164 MW to 183 MW.

Table IV compares the runtime of the forward model and the runtime of the gradient
calculation. Both were performed in parallel with 4 CPUs. The ratio of forward and
adjoint runtimes is close to the theoretical ideal, as expected.
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6.3. Data assimilation with wetting and drying
6.3.1. Introduction. Wetting and drying processes such as tsunami inundation or the

flooding and receding of tides play an important role in the study of tsunamis [Kowalik
et al. 2005], tidal flats and river estuaries [Zhang et al. 2009; Xue and Du 2010], and
flooding events [Westerink et al. 2008; Song et al. 2011]. Many algorithms have been
proposed for the numerical simulation of wetting and drying processes, both for the
shallow water equations (Medeiros and Hagen [2013] and the references therein) and
for the Navier-Stokes equations [Funke et al. 2011].

In this example, we consider a data assimilation problem where the goal is to recon-
struct the profile of an incoming tsunami from observations of the wet/dry inundation
interface. The tsunami is modelled by the time-dependent nonlinear shallow water
equations with the wetting and drying scheme proposed by Kärnä et al. [2011]. The
resulting optimisation problem is:

min
m,u,η

J(η)

subject to
∂u

∂t
+ (u · ∇)u+ g∇η =

ct(H̃)

H̃
‖u‖u on Ω× (0, T ],

∂H̃

∂t
+∇ · (H̃u) = 0 on Ω× (0, T ],

H̃ = m on ∂ΩD × (0, T ].

(12)

where Ω ⊂ R2 is the spatial domain, T is the final time and u : Ω × (0, T ] → R2

and η : Ω × (0, T ] → R are the unknown depth-averaged velocity and free-surface
displacement, respectively. In the classical shallow water equations the total water
depth is defined as H ≡ η + h, where h : Ω → R is the static bathymetry; in order
to account for wetting and drying, Kärnä et al. [2011] uses a modified total depth
definition H̃ ≡ f(H) instead, where f is a smooth approximation of the maximum
operator:

f(H) ≡ 1

2

(√
H2 + α2 +H

)
≈ max(0, H),

and α > 0 controls the accuracy of the approximation. The remaining parameters
in (12) are the gravitational force g = 9.81 m/s2 and the friction coefficient in the
Chézy-Manning formulation:

ct(H̃) =
gµ2

H̃1/3
,

where µ ∈ R is the user specified Manning coefficient.
The boundary conditions are as follows: on the inflow boundary ∂ΩD a Dirichlet

boundary condition with value m : (0, T ]→ R is applied, which also acts as the control
parameter. For simplicity, it is assumed thatm varies only in time, i.e. is constant along
the boundary. On the remaining boundaries, a no-normal flow boundary condition is
applied.

The functional of interest J measures the misfit between the observed and the sim-
ulated wet/dry interface. For its formulation, an indicator function is constructed that
is 1 in dry areas and 0 in wet areas. By noting that η ≥ h in wet areas and η < h in
dry areas, this indicator function is defined as H(η − h) where H denotes the following
smooth approximation of the Heaviside step function:

H(x) ≡ 1

2

(
x√

x2 + α2
+ 1

)
≈
{

0 if x < 0,

1 else,
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Fig. 7: The laboratory setup of the Hokkaido-Nansei-Oki tsunami example, based on
the 1:400 laboratory experiment of Matsuyama and Tanaka [2001]. The island at the
center and the coast on the right are hit by a tsunami coming from the left boundary.

where again α controls the smoothness of the approximation. With that, the functional
of interest is defined as:

J(η) ≡ 1

2

∫ T

0

||H(η − h)− d||2L2(Ω) dt,

where d : Ω × (0, T ] → R denotes the indicator function of the observed wet/dry inter-
face. While such inverse problems are in general ill-posed and require regularisation,
satisfactory numerical results were obtained in this example with no regularisation
term. The implementation of such a regularisation term in the functional would be a
trivial modification.

6.3.2. Implementation. The modified shallow water equations in the optimisation prob-
lem (12) are discretised with the LBB-stable P1DG-P2 finite element pair in space
[Cotter et al. 2009]. A simple upwinding scheme is implemented, which is obtained
by integrating the advection term by parts, replacing the advected velocity at the in-
flow facets with the upwind velocity and then integrating by parts again. Following
Kärnä et al. [2011], the resulting equations are then discretised with a second-order
Diagonally Implicit Runge-Kutta (DIRK22) scheme in time [Ascher et al. 1997, §2.6].

The implementation of problem (12) in the presented optimisation framework was
straightforward: the control parameters appear directly in the UFL representation of
the governing equations, and hence the framework was applicable without any modi-
fications.

6.3.3. Reconstruction of the Hokkaido-Nansei-Oki tsunami profile. This example is motivated
by the question of whether it is possible to reconstruct a tsunami profile from satellite
observations that record the inundation interface on the coast over time.

The considered event is the Hokkaido-Nansei-Oki tsunami that occurred in 1993
and produced run-up heights of up to 30 m on Okushiri island, Japan. The Central
Research Institute for Electric Power Industry (CRIEPI) in Abiko, Japan constructed
a 1:400 laboratory scale model of the area around the island [Matsuyama and Tanaka
2001]. Following the setup used in Yalciner et al. [2011], we consider a rectangular
domain of size 5.448 m×3.402 m, with the bathymetry and coastal topography shown in
figure 7a. It contains an island in the center and coastal regions on the top right of the
domain. The left boundary is the inflow boundary ∂ΩD, on which a surface elevation
profile is enforced that resembles a tsunami (figure 8a). The task is to reconstruct this
wave profile.

The domain is discretised with an unstructured mesh consisting of 1, 411 triangular
elements with increasing resolution near the inundation areas (figure 7b). The tem-
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Runtime (s) Ratio
Forward model 2026

Forward model + adjoint model 3146 1.55

Table V: Timings for the tsunami reconstruction gradient calculation. The efficiency of
the adjoint approaches the theoretical ideal value of 1.5.

poral discretisation uses a timestep of 0.5 s with a total simulation time of 32 s. The
Manning coefficient was set to µ = 0.05 s/m 1

3 and a smoothness value of α = 0.1 was
used.

The observations d are synthetically generated by running the forward model with
the wave profile that was used in the laboratory experiment while recording the
wet/dry interface. This approach of generating the synthetic observation data with the
same model that is used for the assimilation is referred to as an “inverse crime“ [Kaipio
and Somersalo 2004], which renders the optimisation problem less ill-posed than it ac-
tually is. However, the main purpose of this example is to demonstrate the capabilities
of the optimisation framework, and hence this approach is adopted for simplicity.

The optimisation algorithm begins with an initial guess for the Dirichlet boundary
values of 0.105 cm for all timelevels, which corresponds to the final free-surface dis-
placement of the input wave. The tsunami signal at the boundary is applied 2 s after
the simulation start time. The boundary condition during the final 2 s has no impact on
the functional, as the wave does not affect the wet/dry interface before the simulation
ends. Therefore, the boundary values at the start and end were reset to the correct
Dirichlet boundary values and excluded from the optimisation. Furthermore, a box
constraint was used to restrict the minimum and maximum free-surface displacement
between −1.5 cm and +2 cm; without these constraints the first optimisation iterations
generate unrealistically large Dirichlet boundary values for which the forward model
does not converge.

Figure 8 shows the results of the problem solved with the limited memory BFGS
(L-BFGS-B) implementation in SciPy [Jones et al. 2001]. After 103 optimisation itera-
tions (113 functional evaluations) the relative decrease of the functional of interest fell
below machine precision and the algorithm terminated. The incoming wave was recon-
structed to within an absolute error of 3.91× 10−7 cm (figure 8c), which corresponds to
a relative error of less than 3× 10−5% of the incoming wave height.

Table V lists the runtimes of the forward model and the gradient calculation. The
nonlinear equations of the forward model are typically solved with 2 Newton itera-
tions, which suggests an optimal runtime ratio of 1.5. The measured value is close to
this theoretical value and confirms the relative efficiency of the adjoint model imple-
mentation.

7. SUMMARY
In this paper we present a new framework for rapidly defining and solving PDE-
constrained optimisation problems. The framework exploits the FEniCS system,
dolfin-adjoint, and established optimisation algorithms to allow the user to specify the
discretised optimisation problem in a high-level language that resembles the mathe-
matical notation.

The core idea of the implementation is to perform all required tasks of the optimi-
sation process using the tape of the forward model that is recorded by dolfin-adjoint
(analogous to the AD concept of a tape). This includes the evaluation of the objective
functional by replaying the forward model, computing the functional gradient by de-
riving and solving the adjoint problem, and modifying the tape in order to incorporate
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Fig. 8: Results of the reconstruction of the Hokkaido-Nansei-Oki tsunami profile. The
initial and final 2 s of the boundary values are excluded from the reconstruction.

parameter updates. While this paper applies the idea to the dolfin-adjoint system, the
same approach is applicable to the operator-overloading class of AD tools that build a
tape at runtime.

As demonstrated, this approach reduces the required user input to a minimum: once
the forward model has been implemented, only a handful of lines of code are required
to specify the optimisation problem. It applies naturally to both linear and nonlinear as
well as to both steady and time-dependent governing PDEs. Furthermore, the user has
the choice of a variety of gradient-free and gradient-based methods. General equality
and inequality control constraints can be applied.

In this paper, the reduced formulation is used for solving the optimisation prob-
lem. For cases where quasi-Newton methods applied to the reduced formulation are
insufficient, the framework provides all ingredients necessary for more sophisticated
approaches. Therefore, this framework is also of interest for the development of such
advanced optimisation algorithms: by implementing an algorithm in the framework
once, it is immediately applicable to optimisation problems across science and engi-
neering. Future work includes the automation of shape optimisation, the development
of the oneshot approach, multigrid optimisation techniques, and the exploitation of
reduced-order modelling in optimisation.
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